Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 156: 105407, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058347

RESUMO

Stroke is one of the leading causes of death worldwide, with intracerebral hemorrhage (ICH) being the most lethal subtype. Neuritin (Nrn) is a neurotropic factor that has been reported to have neuroprotective effects in acute brain and spinal cord injury. However, whether Nrn has a protective role in ICH has not been investigated. In this study, ICH was induced in C57BL/6 J mice by injection of collagenase VII, while the overexpression of Nrn in the striatum was induced by an adeno-associated virus serotype 9 (AAV9) vector. We found that compared with GFP-ICH mice, Nrn-ICH mice showed improved performance in the corner, cylinder and forelimb tests after ICH, and showed less weight loss and more rapid weight recovery. Overexpression of Nrn reduced brain lesions, edema, neuronal death and white matter and synaptic integrity dysfunction caused by ICH. Western blot results showed that phosphorylated PERK and ATF4 were significantly inhibited, while phosphorylation of Akt/mammalian target of rapamycin was increased in the Nrn-ICH group, compared with the GFP-ICH group. Whole cell recording from motor neurons indicated that overexpression of Nrn reversed the decrease of spontaneous excitatory postsynaptic currents (sEPSCs) and action potential frequencies induced by ICH. These data show that Nrn improves neurological deficits in mice with ICH by reducing brain lesions and edema, inhibiting neuronal death, and possibly by increasing neuronal connections.


Assuntos
Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Recuperação de Função Fisiológica/fisiologia , Adenina/administração & dosagem , Adenina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral/patologia , Dependovirus/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Furanos/administração & dosagem , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Indóis/administração & dosagem , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos
2.
Nature ; 575(7781): 203-209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666698

RESUMO

Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.


Assuntos
Alelos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Mutação/genética , Animais , Ataxina-3/genética , Autofagossomos/metabolismo , Autofagia , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/efeitos dos fármacos , Neurônios/citologia , Peptídeos/genética , Fenótipo , Reprodutibilidade dos Testes
3.
Acta Pharmacol Sin ; 39(9): 1414-1420, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29595190

RESUMO

Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.


Assuntos
Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Ligadas por GPI/fisiologia , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/fisiopatologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
4.
Sci Rep ; 7: 44521, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303965

RESUMO

Mounting evidence suggests that exposure to radiofrequency electromagnetic radiation (RF-EMR) can influence learning and memory in rodents. In this study, we examined the effects of single exposure to 1.8 GHz RF-EMR for 30 min on subsequent recognition memory in mice, using the novel object recognition task (NORT). RF-EMR exposure at an intensity of >2.2 W/kg specific absorption rate (SAR) power density induced a significant density-dependent increase in NORT index with no corresponding changes in spontaneous locomotor activity. RF-EMR exposure increased dendritic-spine density and length in hippocampal and prefrontal cortical neurons, as shown by Golgi staining. Whole-cell recordings in acute hippocampal and medial prefrontal cortical slices showed that RF-EMR exposure significantly altered the resting membrane potential and action potential frequency, and reduced the action potential half-width, threshold, and onset delay in pyramidal neurons. These results demonstrate that exposure to 1.8 GHz RF-EMR for 30 min can significantly increase recognition memory in mice, and can change dendritic-spine morphology and neuronal excitability in the hippocampus and prefrontal cortex. The SAR in this study (3.3 W/kg) was outside the range encountered in normal daily life, and its relevance as a potential therapeutic approach for disorders associated with recognition memory deficits remains to be clarified.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Radiação Eletromagnética , Reconhecimento Visual de Modelos/efeitos da radiação , Células Piramidais/efeitos da radiação , Potenciais de Ação/efeitos da radiação , Animais , Espinhas Dendríticas/patologia , Espinhas Dendríticas/efeitos da radiação , Hipocampo/fisiopatologia , Hipocampo/efeitos da radiação , Memória , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Camundongos , Células Piramidais/patologia , Ondas de Rádio/efeitos adversos
5.
Sheng Li Xue Bao ; 69(1): 109-121, 2017 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-28217814

RESUMO

Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor beta superfamily. GDF-15 expression is dramatically upregulated during acute brain injury, cancer, cardiovascular disease, and inflammation, suggesting its potential value as a disease biomarker. It has been suggested that GDF-15 has neurotropic effects in the nervous system. Our studies showed that GDF-15 modulated the expression of neuronal K+ and Ca2+ ion channels and increased the release of excitatory transmitter in the medial prefrontal cortex of mice. GDF-15 is also involved in the complex modulation of cancer and cardiovascular disease. Here, we reviewed studies involving the modulation of GDF-15 expression and its mechanisms, the primary pathological and physiological functions of GDF-15 in neurological and cardiovascular systems, and its role in cancer progression. The biological effects and the values of GDF-15 in basic research and clinical applications were also addressed.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Neoplasias/fisiopatologia , Sistema Nervoso/metabolismo , Animais , Lesões Encefálicas/fisiopatologia , Canais de Cálcio/metabolismo , Progressão da Doença , Humanos , Inflamação , Camundongos , Canais de Potássio/metabolismo , Córtex Pré-Frontal/metabolismo , Fator de Crescimento Transformador beta , Regulação para Cima
6.
J Biol Chem ; 291(33): 17369-81, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27307045

RESUMO

Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Canais de Potássio Shal/biossíntese , Animais , Calcineurina/genética , Cerebelo/metabolismo , Espinhas Dendríticas/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Canais de Potássio Shal/genética
7.
Biochem J ; 473(13): 1895-904, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114559

RESUMO

GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-ß superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K(+) currents and Kv2.1 α subunit expression through TßRII (TGF-ß receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca(2+) concentration ([Ca(2+)]i) in response to membrane depolarization, as determined by Ca(2+) imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca(2+) current (ICa) without altering steady-state activation of Ca(2+) channels. Treatment with nifedipine, an inhibitor of L-type Ca(2+) channels, abrogated GDF-15-induced increases in [Ca(2+)]i and ICa The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TßRII phosphorylation. Given that Cav1.3 is not only a channel for Ca(2+) influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TßRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Cerebelo/citologia , Fator 15 de Diferenciação de Crescimento/farmacologia , Neurônios/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios/efeitos dos fármacos , Nifedipino/farmacologia , Proteína Oncogênica v-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
Sci Rep ; 6: 21774, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887777

RESUMO

Accumulating evidence suggests significant biological effects caused by extremely low frequency electromagnetic fields (ELF-EMF). Although exo-endocytosis plays crucial physical and biological roles in neuronal communication, studies on how ELF-EMF regulates this process are scarce. By directly measuring calcium currents and membrane capacitance at a large mammalian central nervous synapse, the calyx of Held, we report for the first time that ELF-EMF critically affects synaptic transmission and plasticity. Exposure to ELF-EMF for 8 to 10 days dramatically increases the calcium influx upon stimulation and facilitates all forms of vesicle endocytosis, including slow and rapid endocytosis, endocytosis overshoot and bulk endocytosis, but does not affect the RRP size and exocytosis. Exposure to ELF-EMF also potentiates PTP, a form of short-term plasticity, increasing its peak amplitude without impacting its time course. We further investigated the underlying mechanisms and found that calcium channel expression, including the P/Q, N, and R subtypes, at the presynaptic nerve terminal was enhanced, accounting for the increased calcium influx upon stimulation. Thus, we conclude that exposure to ELF-EMF facilitates vesicle endocytosis and synaptic plasticity in a calcium-dependent manner by increasing calcium channel expression at the nerve terminal.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/química , Campos Eletromagnéticos , Endocitose , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Animais , Comunicação Celular , Exocitose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas SNARE/fisiologia
9.
PLoS One ; 10(10): e0140715, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485043

RESUMO

Arachidonic acid (AA) and its metabolites are important second messengers for ion channel modulation. The effects of extracellular application of AA and its non-metabolized analogue on muscle rNaV1.4 Na+ current has been studied, but little is known about the effects of intracellular application of AA on this channel isoform. Here, we report that intracellular application of AA significantly augmented the rNaV1.4 current peak without modulating the steady-state activation and inactivation properties of the rNaV1.4 channel. These results differed from the effects of extracellular application of AA on rNaV1.4 current. The effects of intracellular AA were mimicked by prostaglandin E2 but not eicosatetraynoic acid (ETYA), the non-metabolized analogue of AA, and were eliminated by treatment with cyclooxygenase inhibitors, flufenamic acid, or indomethacin. AA/PGE2-induced activation of rNaV1.4 channels was mimicked by a cAMP analogue (db-cAMP) and eliminated by a PKA inhibitor, PKAi. Furthermore, inhibition of EP2 and EP4 (PGE2 receptors) with AH6809 and AH23848 reduced the intracellular AA/PGE2-induced increase of rNaV1.4 current. Two mutated channels, rNaV1.4S56A and rNaV1.4T21A, were designed to investigate the role of predicted phosphorylation sites in the AA/PGE2-mediated regulation of rNaV1.4 currents. In rNaV1.4S56A, the effects of intracellular db-cAMP, AA, and PGE2 were significantly reduced. The results of the present study suggest that intracellular AA augments rNaV1.4 current by PGE2/EP receptor-mediated activation of the cAMP/PKA pathway, and that the S56 residue on the channel protein is important for this process.


Assuntos
Ácido Araquidônico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Ácido Flufenâmico/farmacologia , Células HEK293 , Humanos , Indometacina/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Sci Rep ; 5: 11768, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138388

RESUMO

Animal studies have shown that electromagnetic field exposure may interfere with the activity of brain cells, thereby generating behavioral and cognitive disturbances. However, the underlying mechanisms and possible preventions are still unknown. In this study, we used a mouse model to examine the effects of exposure to extremely low-frequency (50 Hz) electromagnetic fields (ELF MFs) on a recognition memory task and morphological changes of hippocampal neurons. The data showed that ELF MFs exposure (1 mT, 12 h/day) induced a time-dependent deficit in novel object associative recognition memory and also decreased hippocampal dendritic spine density. This effect was observed without corresponding changes in spontaneous locomotor activity and was transient, which has only been seen after exposing mice to ELF MFs for 7-10 days. The over-expression of hippocampal neuritin, an activity-dependent neurotrophic factor, using an adeno-associated virus (AAV) vector significantly increased the neuritin level and dendritic spine density. This increase was paralleled with ELF MFs exposure-induced deficits in recognition memory and reductions of dendritic spine density. Collectively, our study provides evidence for the association between ELF MFs exposure, impairment of recognition memory, and resulting changes in hippocampal dendritic spine density. Neuritin prevented this ELF MFs-exposure-induced effect by increasing the hippocampal spine density.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Hipocampo/fisiopatologia , Transtornos da Memória/prevenção & controle , Proteínas do Tecido Nervoso/fisiologia , Animais , Espinhas Dendríticas/patologia , Dependovirus/genética , Feminino , Proteínas Ligadas por GPI/fisiologia , Vetores Genéticos , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos ICR , Reconhecimento Visual de Modelos , Fatores de Proteção , Reconhecimento Psicológico
11.
J Cell Mol Med ; 19(10): 2413-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26176998

RESUMO

Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABA(A) Rs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABA(A) Rs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABA(A) R currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABA(A) R currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABA(A) R currents. Together, these data obviously demonstrated for the first time that neuronal GABA(A) currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Ativação do Canal Iônico , Campos Magnéticos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Análise de Regressão , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
12.
Biochem J ; 460(1): 35-47, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24597762

RESUMO

GDF15 (growth/differentiation factor 15), a novel member of the TGFß (transforming growth factor ß) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFßR2 (TGFß receptor 2), not TGFßR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFßRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFßRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.


Assuntos
Cerebelo/fisiologia , Fator 15 de Diferenciação de Crescimento/fisiologia , Proteína Oncogênica v-akt/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Humanos , Ratos , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais/genética
13.
Cell Calcium ; 55(1): 48-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24360572

RESUMO

Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50Hz, 0.2mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.


Assuntos
Ácido Araquidônico/fisiologia , Canais de Cálcio Tipo T/fisiologia , Campos Eletromagnéticos , Leucotrieno E4/fisiologia , Transdução de Sinais/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Células HEK293 , Homeostase/fisiologia , Humanos , Leucotrieno E4/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais
14.
Sheng Li Xue Bao ; 65(5): 483-8, 2013 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-24129728

RESUMO

Neuritin is a new member of the neurotrophic factor family, whose gene is named cpg15 (candidate plasticity-related gene 15) and can be activated by neural activity or neurotrophins (NTs). Experiments show that neuritin is able to promote the growth and branching of neurites, and plays an important role in neuronal plasticity and neuronal regeneration. Recent studies have proved that neuritin is not only involved in the regulation of various physiological functions in the nervous system, but also related in angiogenesis and tumorigenesis. Here we review the mechanisms involved in cpg15 expression and regulation, biological effects of neuritin, and how neuritin plays its biological activities. The hot issues and difficulties in the study of neuritin are also discussed.


Assuntos
Neuritos/fisiologia , Plasticidade Neuronal , Neuropeptídeos/fisiologia , Proteínas Ligadas por GPI/fisiologia , Humanos
15.
Am J Physiol Cell Physiol ; 305(5): C547-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804203

RESUMO

Resveratrol (REV) is a naturally occurring phytoalexin that inhibits neuronal K⁺ channels; however, the molecular mechanisms behind the effects of REV and the relevant α-subunit are not well defined. With the use of patch-clamp technique, cultured cerebellar granule cells, and HEK-293 cells transfected with the K(v)2.1 and K(v)2.2 α-subunits, we investigated the effect of REV on K(v)2.1 and K(v)2.2 α-subunits. Our data demonstrated that REV significantly suppressed Kv2.2 but not Kv2.1 currents with a fast, reversible, and mildly concentration-dependent manner and shifted the activation or inactivation curve of Kv2.2 channels. Activating or inhibiting the cAMP/PKA pathway did not abolish the inhibition of K(v)2.2 current by REV. In contrast, activation of PKC with phorbol 12-myristate 13-acetate mimicked the inhibitory effect of REV on K(v)2.2 by modifying the activation or inactivation properties of Kv2.2 channels and eliminated any further inhibition by REV. PKC and PKC-α inhibitor completely eliminated the REV-induced inhibition of K(v)2.2. Moreover, the effect of REV on K(v)2.2 was reduced by preincubation with antagonists of GPR30 receptor and shRNA for GPR30 receptor. Western blotting results indicated that the levels of PKC-α and PKC-ß were significantly increased in response to REV application. Our data reveal, for the first time, that REV inhibited K(v)2.2 currents through PKC-dependent pathways and a nongenomic action of the oestrogen receptor GPR30.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Potássio Shab/antagonistas & inibidores , Estilbenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Resveratrol , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia
16.
Am J Physiol Cell Physiol ; 305(2): C197-206, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23703525

RESUMO

Neuregulin-1 (NRG-1) is a member of a family of neurotrophic factors that is required for the differentiation, migration, and development of neurons. NRG-1 signaling is thought to contribute to both neuronal development and the neuropathology of schizophrenia, which is believed to be a neurodevelopmental disorder. However, few studies have investigated the role of NRG-1 on voltage-gated ion channels. In this study, we report that NRG-1 specifically increases the density of transient outward K(+) currents (IA) in rat cerebellar granule neurons (CGNs) in a time-dependent manner without modifying the activation or inactivation properties of IA channels. The increase in IA density is mediated by increased protein expression of Kv4.2, the main α-subunit of the IA channel, most likely by upregulation of translation. The effect of NRG-1 on IA density and Kv4.2 expression was only significant in immature neurons. Mechanistically, both Akt and mammalian target of rapamycin (mTOR) signaling pathways are required for the increased NRG-1-induced IA density and expression of Kv4.2. Moreover, pharmacological blockade of the ErbB4 receptor reduced the effect of NRG-1 on IA density and Kv4.2 induction. Our data reveal, for the first time, that stimulation of ErbB4 signaling by NRG-1 upregulates the expression of K(+) channel proteins via activation of the Akt/mTOR signaling pathway and plays an important role in neuronal development and maturation. NRG1 does not acutely change IA and delayed-rectifier outward (IK) of rat CGNs, suggesting that it may not alter excitability of immature neurons by altering potassium channel property.


Assuntos
Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Shal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Movimento Celular , Receptores ErbB/genética , Regulação da Expressão Gênica/fisiologia , Potenciais da Membrana , Neuregulina-1/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4 , Canais de Potássio Shal/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
17.
PLoS One ; 8(1): e54376, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349866

RESUMO

Although the modulation of Ca(2+) channel activity by extremely low-frequency electromagnetic fields (ELF-EMF) has been studied previously, few reports have addressed the effects of such fields on the activity of voltage-activated Na(+) channels (Na(v)). Here, we investigated the effects of ELF-EMF on Na(v) activity in rat cerebellar granule cells (GCs). Our results reveal that exposing cerebellar GCs to ELF-EMF for 10-60 min significantly increased Na(v) currents (I(Na)) by 30-125% in a time- and intensity-dependent manner. The Na(v) channel steady-state activation curve, but not the steady-state inactivation curve, was significantly shifted (by 5.2 mV) towards hyperpolarization by ELF-EMF stimulation. This phenomenon is similar to the effect of intracellular application of arachidonic acid (AA) and prostaglandin E(2) (PGE(2)) on I(Na) in cerebellar GCs. Increases in intracellular AA, PGE(2) and phosphorylated PKA levels in cerebellar GCs were observed following ELF-EMF exposure. Western blottings indicated that the Na(V) 1.2 protein on the cerebellar GCs membrane was increased, the total expression levels of Na(V) 1.2 protein were not affected after exposure to ELF-EMF. Cyclooxygenase inhibitors and PGE(2) receptor (EP) antagonists were able to eliminate this ELF-EMF-induced increase in phosphorylated PKA and I(Na). In addition, ELF-EMF exposure significantly enhanced the activity of PLA(2) in cerebellar GCs but did not affect COX-1 or COX-2 activity. Together, these data demonstrate for the first time that neuronal I(Na) is significantly increased by ELF-EMF exposure via a cPLA2 AA PGE(2) EP receptors PKA signaling pathway.


Assuntos
Dinoprostona/metabolismo , Campos Eletromagnéticos , Receptores de AMP Cíclico/metabolismo , Receptores de Prostaglandina E/antagonistas & inibidores , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/efeitos da radiação , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Proteínas de Membrana/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Ratos , Receptores de Prostaglandina E/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Canais de Sódio Disparados por Voltagem/fisiologia
18.
PLoS One ; 7(11): e49384, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139844

RESUMO

(+)-SKF 10047 (N-allyl-normetazocine) is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+)-SKF 10047 inhibits K(+), Na(+) and Ca2+ channels via sigma-1 receptor activation. We found that (+)-SKF 10047 inhibited Na(V)1.2 and Na(V)1.4 channels independently of sigma-1 receptor activation. (+)-SKF 10047 equally inhibited Na(V)1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+)-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+)-SKF 10047 inhibition of Na(V)1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM) and 1,3-di-o-tolyl-guanidine (DTG) also inhibited Na(V)1.2 currents through a sigma-1 receptor-independent pathway. The (+)-SKF 10047 inhibition of Na(V)1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764) and Tyr(1771) in the IV-segment 6 domain of the Na(V)1.2 channel and Phe(1579) in the Na(V)1.4 channel for (+)-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V)1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.


Assuntos
Dextrometorfano/farmacologia , Guanidinas/farmacologia , Proteínas Musculares/antagonistas & inibidores , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Fenazocina/análogos & derivados , Receptores sigma/agonistas , Animais , Células COS , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lidocaína/farmacologia , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenazocina/farmacologia , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptores sigma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Sódio/metabolismo , Transfecção , Receptor Sigma-1
19.
PLoS One ; 7(7): e41303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844454

RESUMO

Cyproheptadine (CPH) is a histamine- and serotonin-receptor antagonist, and its effects are observed recently in the modulation of multiple intracellular signals. In this study, we used cortical neurons and HEK-293 cells transfected with Kv2.1 α-subunit to address whether CPH modify neural voltage-gated K(+) channels by a mechanism independent of its serotonergic and histaminergic properties. Our results demonstrate that intracellularly delivered CPH increased the I(K) by reducing the activity of protein kinas A (PKA). Inhibition of G(i) eliminated the CPH-induced effect on both the I(K) and PKA. Blocking of 5-HT-, M-, D(2)-, H(1)- or H(2)-type GPCR receptors with relevant antagonists did not eliminate the CPH-induced effect on the I(K). Antagonists of the sigma-1 receptor, however, blocked the effect of CPH. Moreover, the inhibition of sigma-1 by siRNA knockdown significantly reduced the CPH-induced effect on the I(K). On the contrary, sigma-1 receptor agonist mimicked the effects of CPH on the induction of I(K). A ligand-receptor binding assay indicated that CPH bound to the sigma-1 receptor. Similar effect of CPH were obtained from HEK-293 cells transfected with the α-subunit of Kv2.1. In overall, we reveal for the first time that CPH enhances the I(K) by modulating activity of PKA, and that the associated activation of the sigma-1 receptor/G(i)-protein pathway might be involved. Our findings illustrate an uncharacterized effect of CPH on neuron excitability through the I(K), which is independent of histamine H(1) and serotonin receptors.


Assuntos
Córtex Cerebral/citologia , Ciproeptadina/farmacologia , Espaço Intracelular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Potássio/metabolismo , Receptores sigma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Condutividade Elétrica , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Espaço Intracelular/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Canais de Potássio Shab/metabolismo , Receptor Sigma-1
20.
Protein Cell ; 3(2): 153-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22322890

RESUMO

The sigma-1 receptor is a molecular chaperone protein highly enriched in the brain. Recent studies linked it to many diseases, such as drug addition, Alzheimer's disease, stroke, depression, and even cancer. Sigma-1 receptor is enriched in lipid rafts, which are membrane microdomains essential in signaling processes. One of those signaling processes is ADAM17- and ADAM10-dependent ectodomain shedding. By using an alkaline phosphatase tagged substrate reporter system, we have shown that ADAM10-dependent BTC shedding was very sensitive to both membrane lipid component change and sigma-1 receptor agonist DHEAS treatment while ADAM17-dependent HB-EGF shedding was not; and overexpression of sigma-1 receptor diminished ADAM17- and ADAM10-dependent shedding. Our results indicate that sigma-1 receptor plays an important role in modifying the function of transmembrane proteases.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Receptores sigma/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Animais , Betacelulina , Células COS , Chlorocebus aethiops , Expressão Gênica , Células HEK293 , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microdomínios da Membrana/metabolismo , Receptores sigma/agonistas , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA