Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 403(5-6): 479-494, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35312243

RESUMO

One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.


Assuntos
Anticorpos Monoclonais , Peixe-Zebra , Animais , Anticorpos Monoclonais/química , Mapeamento de Epitopos , Epitopos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Coelhos
2.
Methods Mol Biol ; 1904: 353-375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30539480

RESUMO

Antibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope). Knowing the epitope is valuable information for the improvement of diagnostic assays or therapeutic antibodies, as well as to understand the immune response of a vaccine. While huge progress has been made in the pipelines for the generation and functional characterization of antibodies, the available technologies for epitope mapping are still lacking effectiveness in terms of time and effort. Also, no technique available offers the absolute guarantee of succeeding. Thus, research to develop and improve epitope mapping techniques is still an active field. Phage display from random peptide libraries or single-gene libraries are currently among the most exploited methods for epitope mapping. The first is based on the generation of mimotopes and it is fastened to the need of high-throughput sequencing and complex bioinformatic analysis. The second provides original epitope sequences without requiring complex analysis or expensive techniques, but depends on further investigation to define the functional amino acids within the epitope. In this book chapter, we describe how to perform epitope mapping by antigen fragment phage display from single-gene antigen libraries and how to construct these types of libraries. Thus, we also provide figures and analysis to demonstrate the actual potential of this technique and to prove the necessity of certain procedural steps.


Assuntos
Técnicas de Visualização da Superfície Celular , Mapeamento de Epitopos/métodos , Epitopos , Biblioteca de Peptídeos , Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Ligação Proteica
3.
N Biotechnol ; 33(5 Pt A): 574-81, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26709003

RESUMO

Many diagnostic and therapeutic concepts require antibodies of high specificity. Recombinant binder libraries and related selection approaches allow the efficient isolation of antibodies against almost every target of interest. Nevertheless, it cannot be guaranteed that selected antibodies perform well and interact specifically enough with analytes unless an elaborate characterisation is performed. Here, we present an approach to shorten this process by combining the selection of suitable antibodies with the identification of informative target molecules by means of antibody microarrays, thereby reducing the effort of antibody characterisation by concentrating on relevant molecules. In a pilot scheme, a library of 456 single-chain variable fragment (scFv) binders to 134 antigens was used. They were arranged in a microarray format and incubated with the protein content of clinical tissue samples isolated from pancreatic ductal adenocarcinoma and healthy pancreas, as well as recurrent and non-recurrent bladder tumours. We observed significant variation in the expression of the E3 ubiquitin-protein ligase (CHFR) as well as the glutamate receptor interacting protein 2 (GRIP2), for example, always with more than one of the scFvs binding to these targets. Only the relevant antibodies were then characterised further on antigen microarrays and by surface plasmon resonance experiments so as to select the most specific and highest affinity antibodies. These binders were in turn used to confirm a microarray result by immunohistochemistry analysis.


Assuntos
Biblioteca de Peptídeos , Anticorpos de Cadeia Única , Especificidade de Anticorpos , Biotecnologia , Humanos , Imuno-Histoquímica , Projetos Piloto , Análise Serial de Proteínas , Controle de Qualidade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética
4.
BMC Biotechnol ; 7: 14, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17346344

RESUMO

BACKGROUND: The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. RESULTS: Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd) and the light chain (LC), resulting in the formation of a single chain Fab fragment (scFab), can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabDeltaC) connecting the constant part 1 of the heavy chain (CH1) and the constant part of the light chain (CL) were best suited for phage display and production of soluble antibody fragments. Beside the expression system E. coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies) as well as multimers were characterised. CONCLUSION: A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of common standard sera for detection.


Assuntos
Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Antígenos/imunologia , Sequência de Bases , Sítios de Ligação de Anticorpos/imunologia , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Pichia/genética , Solubilidade
5.
J Immunol Methods ; 318(1-2): 113-24, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17161420

RESUMO

Monoclonal antibodies (Mab) are the fastest growing group of biopharmaceuticals in development. For production in mammalian cells, the four polypeptide chains of the immunoglobulin diheterotetramer must be assembled prior to exit from the endoplasmic reticulum. Various recombinant Mab expression vectors have been developed utilizing mono-and bicistronic expression cassettes encoded on one or two plasmids. However, there are only few studies providing information on the type of vector design optimal for stable or transient production of recombinant IgG. Consequently, in this study, we have constructed a series of mammalian expression vectors for the production of recombinant human or chimeric IgG antibodies with different expression cassette designs. Versions for monocistronic and bicistronic expression with different promoters and cistron arrangements were generated. Antibody production levels were evaluated in transiently transfected 293T and CHO-K1 cells. Furthermore, stable CHO cell lines were generated and analyzed for antibody production levels and stability. Our results indicate that compared to monocistronic expression, EMCV IRES-mediated bicistronic expression constructs yield similar antibody expression levels and show long-term stability in CHO cell lines. Addition of a third cistron encoding YFP was shown to facilitate screening and isolation of clones using a FACS sorter.


Assuntos
Anticorpos Monoclonais/biossíntese , Vetores Genéticos/genética , Imunoglobulina G/biossíntese , Proteínas Recombinantes/biossíntese , Regiões 5' não Traduzidas/genética , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Citomegalovirus/genética , Eletroforese em Gel de Poliacrilamida , Vírus da Encefalomiocardite/genética , Citometria de Fluxo , Expressão Gênica , Genes Reporter/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Peso Molecular , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA