Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(32): e2301939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752764

RESUMO

The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.


Assuntos
Antineoplásicos , Histonas , Compostos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo dos Lipídeos , Acetilação , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lipídeos
2.
Chembiochem ; 24(17): e202300178, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345897

RESUMO

During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Actinas
3.
Curr Opin Chem Biol ; 73: 102257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599256

RESUMO

Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Rutênio/farmacologia , Rutênio/química , Ouro , DNA , Complexos de Coordenação/química
4.
Chemistry ; 29(4): e202202648, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36222279

RESUMO

A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the in vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Estrutura Molecular , Proteômica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Quelantes/química , Cristalografia por Raios X , Ligantes , Linhagem Celular Tumoral
5.
Angew Chem Int Ed Engl ; 61(43): e202209136, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36004624

RESUMO

Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 µM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.


Assuntos
Proteínas Ferro-Enxofre , Neoplasias Ovarianas , Rênio , Humanos , Feminino , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Ferritinas/metabolismo
6.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213972

RESUMO

Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.

7.
Front Chem ; 10: 826346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178376

RESUMO

Acute promyelocytic leukaemia (APL) can be cured by the co-administration of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA). These small molecules relieve the differentiation blockade of the transformed promyelocytes and trigger their maturation into functional neutrophils, which are physiologically primed for apoptosis. This normalization therapy represents a compelling alternative to cytotoxic anticancer chemotherapy, but lacks an in vitro model system for testing the efficiency of novel combination treatments consisting of inducers of differentiation and metallopharmaceuticals. Here, using proteome profiling we present an experimental framework that enables characterising the differentiation- and metal-specific effects of the combination treatment in a panel of acute myeloid leukaemia (AML) cell lines (HL-60 and U937), including APL (NB4). Differentiation had a substantial impact on the proteome on the order of 10% of the identified proteins and featured classical markers and transcription factors of myeloid differentiation. Additionally, ATO provoked specific cytoprotective effects in the AML cell lines HL-60 and U937. In HL-60, these effects included an integrated stress response (ISR) in conjunction with redox defence, while proteasomal responses and a metabolic rewiring were observed in U937 cells. In contrast, the APL cell line NB4 did not display such adaptions indicating a lack of plasticity to cope with the metal-induced stress, which may explain the clinical success of this combination treatment. Based on the induction of these cytoprotective effects, we proposed a novel metal-based compound to be used for the combination treatment instead of ATO. The organoruthenium drug candidate plecstatin-1 was previously shown to induce reactive oxygen species and an ISR. Indeed, the plecstatin-1 combination was found to affect similar pathways compared to the ATO combination in HL-60 cells and did not lead to cytoprotective response signatures in NB4. Moreover, the monocytic cell line U937 showed a low plasticity to cope with the plecstatin-1 combination, which suggests that this combination might achieve therapeutic benefit beyond APL. We propose that the cytoprotective plasticity of cancer cells might serve as a general proxy to discover novel combination treatments in vitro.

8.
J Cell Biol ; 221(3)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139142

RESUMO

The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin-dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin-desmosome (DSM)-network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer-based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.


Assuntos
Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Plectina/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Citoesqueleto/ultraestrutura , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Cães , Células Epiteliais/ultraestrutura , Técnicas de Inativação de Genes , Humanos , Queratinas/metabolismo , Células MCF-7 , Células Madin Darby de Rim Canino , Camundongos , Isoformas de Proteínas/metabolismo , Resistência à Tração
9.
Biomolecules ; 11(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439896

RESUMO

Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients' quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1ß unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.


Assuntos
Linhagem Celular , Endometriose/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Técnicas de Cultura de Células , Ciclo Celular , Eicosanoides/química , Feminino , Humanos , Inflamação , Metaboloma , Metabolômica , Fenótipo , Proteoma , Proteômica/métodos , Fator de Necrose Tumoral alfa/metabolismo
10.
Angew Chem Int Ed Engl ; 60(24): 13405-13413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755286

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by an aberrant metabolic phenotype with high metastatic capacity, resulting in poor patient prognoses and low survival rates. We designed a series of novel AuIII cyclometalated prodrugs of energy-disrupting Type II antidiabetic drugs namely, metformin and phenformin. Prodrug activation and release of the metformin ligand was achieved by tuning the cyclometalated AuIII fragment. The lead complex 3met was 6000-fold more cytotoxic compared to uncoordinated metformin and significantly reduced tumor burden in mice with aggressive breast cancers with lymphocytic infiltration into tumor tissues. These effects was ascribed to 3met interfering with energy production in TNBCs and inhibiting associated pro-survival responses to induce deadly metabolic catastrophe.


Assuntos
Antineoplásicos/metabolismo , Metformina/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ouro/química , Humanos , Metformina/química , Camundongos , Conformação Molecular , Fenformin/química , Fenformin/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440755

RESUMO

The in situ spectroelectrochemical cyclic voltammetric studies of the antimony-monocapped nickel(II) and iron(II) tris-pyridineoximates with a labile triethylantimony cross-linking group and Zr(IV)/Hf(IV) phthalocyaninate complexes were performed in order to understand the nature of the redox events in the molecules of heterodinuclear zirconium(IV) and hafnium(IV) phthalocyaninate-capped derivatives. Electronic structures of their 1e-oxidized and 1e-electron-reduced forms were experimentally studied by electron paramagnetic resonance (EPR) spectroscopy and UV-vis-near-IR spectroelectrochemical experiments and supported by density functional theory (DFT) calculations. The investigated hybrid molecular systems that combine a transition metal (pseudo)clathrochelate and a Zr/Hf-phthalocyaninate moiety exhibit quite rich redox activity both in the cathodic and in the anodic region. These binuclear compounds and their precursors were tested as potential catalysts in oxidation reactions of cyclohexane and the results are discussed.


Assuntos
Complexos de Coordenação/química , Cicloexanos/química , Háfnio/química , Zircônio/química , Catálise , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Indóis/química , Ferro/química , Isoindóis , Modelos Moleculares , Níquel/química , Oxirredução , Oximas/química , Piridinas/química
12.
Angew Chem Int Ed Engl ; 60(10): 5063-5068, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369073

RESUMO

The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Proteína Ribossômica L10/metabolismo , Proteínas Ribossômicas/metabolismo , Antineoplásicos/química , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos , Compostos Organometálicos/química , Polirribossomos/metabolismo , Rutênio/química , Fatores de Transcrição TFII/metabolismo , Transcriptoma
13.
Biomolecules ; 10(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256144

RESUMO

Recognition of elements of protein tertiary structure is crucial for biotechnological and biomedical tasks; this makes the development of optical sensors for certain protein surface elements important. Herein, we demonstrated the ability of iron(II) clathrochelates (1-3) functionalized with mono-, di- and hexa-carboxyalkylsulfide to induce selective circular dichroism (CD) response upon binding to globular proteins. Thus, inherently CD-silent clathrochelates revealed selective inducing of CD spectra when binding to human serum albumin (HSA) (1, 2), beta-lactoglobuline (2) and bovine serum albumin (BSA) (3). Hence, functionalization of iron(II) clathrochelates with the carboxyalkylsulfide group appears to be a promising tool for the design of CD-probes sensitive to certain surface elements of proteins tertiary structure. Additionally, interaction of 1-3 with proteins was also studied by isothermal titration calorimetry, protein fluorescence quenching, electrospray ionization mass spectrometry (ESI-MS) and computer simulations. Formation of both 1:1 and 1:2 assemblies of HSA with 1-3 was evidenced by ESI-MS. A protein fluorescence quenching study suggests that 3 binds with both BSA and HSA via the sites close to Trp residues. Molecular docking calculations indicate that for both BSA and HSA, binding of 3 to Site I and to an "additional site" is more favorable energetically than binding to Site II.


Assuntos
Quelantes/química , Compostos Ferrosos/química , Lactoglobulinas/química , Soroalbumina Bovina/química , Albumina Sérica Humana/química , Sulfetos/química , Animais , Bovinos , Dicroísmo Circular , Humanos , Estrutura Molecular
14.
Metallomics ; 12(12): 2121-2133, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33295928

RESUMO

Organometallic metal(arene) anticancer agents were believed to confer low selectivity for potential cellular targets. However, the ruthenium(arene) pyridinecarbothioamide (plecstatin-1) showed target selectivity for plectin, a scaffold protein and cytolinker. We employed a three-dimensional cancer spheroid model and showed that plecstatin-1 limited spheroid growth, induced changes in the morphology and in the architecture of tumour spheroids by disrupting the cytoskeletal organization. Additionally, we demonstrated that plecstatin-1 induced oxidative stress, followed by the induction of an immunogenic cell death signature through phosphorylation of eIF2α, exposure of calreticulin, HSP90 and HSP70 on the cell membrane and secretion of ATP followed by release of high mobility group box-1.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Morte Celular Imunogênica/efeitos dos fármacos , Rutênio/farmacologia , Antineoplásicos/química , Neoplasias Colorretais/patologia , Células HCT116 , Células HT29 , Humanos , Rutênio/química , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Tioamidas/química , Tioamidas/farmacologia , Células Tumorais Cultivadas
15.
Chemistry ; 26(67): 15528-15537, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902006

RESUMO

The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.


Assuntos
Antineoplásicos , Ouro , Compostos Organometálicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Cafeína/análogos & derivados , Cafeína/química , Cafeína/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteômica
16.
Chembiochem ; 21(21): 3071-3076, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511840

RESUMO

To gain more insight into the factors controlling efficient cysteine arylation by cyclometallated AuIII complexes, the reaction between selected gold compounds and different peptides was investigated by high-resolution liquid chromatography electrospray ionization mass spectrometry (HR-LC-ESI-MS). The deduced mechanisms of C-S cross-coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.


Assuntos
Cisteína/síntese química , Ouro/química , Compostos Organoáuricos/química , Peptídeos/química , Cisteína/química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Molecular , Compostos Organoáuricos/síntese química
17.
Front Chem ; 8: 209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318543

RESUMO

A series of 2-phenylbenzothiazole derivatives and their corresponding organometallic ruthenium(II) and osmium(II) complexes were synthesized, designed to exploit both, the attributes of the half-sandwich transition metal scaffold and the bioactivity spectrum of the applied 2-phenylbenzothiazoles. All synthesized compounds were characterized via standard analytical methods. The obtained organometallics showed antiproliferative activity in the low µM range and are thus at least an order of magnitude more potent than the free ligands. ESI-MS measurements showed that the examined compounds were stable in aqueous solution over 48 h. Additionally, their binding preferences to small biomolecules, their cellular accumulation and capacity of inducing apoptosis/necrosis were investigated. Based on the fluorescence properties of the selected ligand and the corresponding ruthenium complex, their subcellular distribution was studied by fluorescence microscopy, revealing a high degree of colocalization with acidic organelles of cancer cells.

18.
Bioconjug Chem ; 31(5): 1279-1288, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32243752

RESUMO

The conjugation of metal-based scaffolds to peptides, proteins, or antibodies allows the systemic targeting of these payloads to specific locations in the body, such as target cells/tissues (e.g., cancer) and subcellular compartments, for either therapy or imaging. This Topical Review includes an overview of the available chemical strategies to achieve metal-peptidic bioconjugates for biomedical applications, focusing on the types of chemical functionalities used to tether the drug to the peptide directly or indirectly. Central to all the possible approaches is the development of highly efficient and selective bioconjugation reactions that operate under mild, peptide-compatible conditions. For each strategy, selected examples are highlighted with particular emphasis to the studies reporting the therapeutic effects of the metal-peptidic conjugates in the treatment of cancer. Overall, some of the herewith discussed cases clearly hold promise for translation into clinically meaningful applications in the field of targeted therapeutics. Nevertheless, novel chemical approaches enabling the chemoselective metalation of specific residues in peptides under biologically friendly conditions, as well as the design of stimuli-responsive bioconjugates, are still expected to emerge. Certainly, the peculiar biorthogonal reactivity of metallodrugs provides an enlarged toolbox of opportunities for bioconjugation. Therefore, we outline a number of possible future directions and applications.


Assuntos
Metais/química , Peptídeos/química , Animais , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Peptídeos/uso terapêutico
19.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32064608

RESUMO

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imidazóis/farmacocinética , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Piridazinas/farmacocinética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imidazóis/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Inorg Biochem ; 202: 110844, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739113

RESUMO

Experimental organometallic gold(I) compounds hold promise for anticancer therapy. This study reports the synthesis of two novel families of gold(I) complexes, including N1-substituted bis-N-heterocyclic carbene (NHC) complexes of general formula [Au(N1-TBM)2]BF4 (N1-TBM = N1-substituted 9-methyltheobromin-8-ylidene) and mixed gold(I) NHC-alkynyl complexes, [Au(N1-TBM)alkynyl]. The compounds were fully characterised for their structure and stability in aqueous environment and in the presence of N-acetyl cysteine by nuclear magnetic resonance (NMR) spectroscopy. The structures of bis(1-ethyl-3,7,9-trimethylxanthin-8-ylidene)gold(I), (4-ethynylpyridine)(1,9-dimethyltheobromine-8-ylidene)gold(I) and of (2,8-Diethyl-10-(4-ethynylphenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) were also confirmed by X-ray diffraction analysis. The compounds were studied for their properties as DNA G-quadruplex (G4 s) stabilizers by fluorescence resonance energy transfer (FRET) DNA melting. Only the cationic [Au(N1-TBM)2]BF4 family showed moderate G4 stabilization properties with respect to the previously reported benchmark compound [Au(9-methylcaffein-8-ylidene)2]+ (AuTMX2). However, the compounds also showed marked selectivity for binding to G4 structures with respect to duplex DNA in competition experiments. For selected complexes, the interactions with G4 s were also confirmed by circular dichroism (CD) studies. Furthermore, the gold(I) complexes were assessed for their antiproliferative effects in human cancer cells in vitro, displaying moderate activity. Of note, among the mixed gold(I) NHC-alkynyl compounds, one features a fluorescent boron-dipyrromethene (BODIPY) moiety which allowed determining its uptake into the cytoplasm of cancer cells by fluorescence microscopy.


Assuntos
Antineoplásicos , Quadruplex G , Neoplasias , Compostos Organoáuricos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Células MCF-7 , Metano/análogos & derivados , Metano/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA