Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32601166

RESUMO

Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-ß-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Preparações Farmacêuticas , Adenoviridae , Infecções por Adenovirus Humanos/tratamento farmacológico , Humanos , Nelfinavir/farmacologia
2.
Toxicol Appl Pharmacol ; 300: 25-33, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061667

RESUMO

Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1µM) and toxic concentrations (5µM) for 24, 48, and 72h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5µM at all time-points. TNF-α led to induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5nM, while HepG2 cells were insensitive up to 10µM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin.


Assuntos
Toxinas Bacterianas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Toxinas Bacterianas/administração & dosagem , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/fisiologia , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Interleucina-8/biossíntese , Interleucina-8/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Transportadores de Ânions Orgânicos/biossíntese , Peptídeos Cíclicos/administração & dosagem , Fator de Transcrição CHOP/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
3.
Environ Sci Technol ; 47(7): 3378-85, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23431999

RESUMO

Microcystins (MCs) are hepatotoxins produced by cyanobacteria responsible for toxicity in humans and animals. Here, we investigate unexplored molecular pathways by which microcystin-LR (MC-LR) acts on hepatocytes to elucidate unknown modes of action. We focus on the endoplasmatic reticulum (ER) stress response or unfolded protein response (UPR), and on mechanisms that may contribute to the tumor-promoting effect of MCs in animals, including the activation of NFκB, the expression of interferon alpha (IFN-α) and the induction of interferon stimulated genes (ISGs), as well as the expression of tumor necrosis factor alpha (TNF-α). To this end, we exposed human hepatoma cells (Huh7) to 0.5 µM (nontoxic concentration), 5 µM (EC50 concentration), 25 µM and 50 µM (cytotoxic concentrations) MC-LR for 6, 24, 48, and 72 h. The expression of phosphatase 2A (PP2A) mRNA and protein was induced at 5 µM MC-LR. Phosphorylated P-CREB, a transcription factor for PP2A, leads to elevated expression of PP2A. Furthermore, all of the three ER stress pathways, the UPR and the endoplasmic reticulum-associated degradation were activated after exposure to 5, 25, and 50 µM MC-LR. Additionally, the expression of NFκB, IFN-α, and several INF-α-stimulated genes was strongly activated. The proinflammatory cytokine TNF-α was also induced. Our data demonstrate that MC-LR induces all ER stress response pathways. Consequently NFκB is activated, which in turn induces the expression of IFN-α and TNF-α. All of these activated pathways, which are analyzed here for the first time in detail, may contribute to the hepatotoxic, inflammatory, and tumorigenic action of MC-LR.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Interferon-alfa/metabolismo , Microcistinas/toxicidade , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/genética , Toxinas Marinhas , Microcistinas/química , Modelos Biológicos , NF-kappa B/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA