Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ther Adv Med Oncol ; 15: 17588359231210675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028143

RESUMO

Prognosis of metastatic triple negative breast cancer (mTNBC) remains poor despite recent advances in therapeutic options. Trastuzumab deruxtecan (T-DXd) has shown promising efficacy in patients with human epidermal growth factor receptor 2 (HER2)-low breast cancer, which is defined by immunohistochemistry (IHC) 1+ or 2+ and lack of HER2 amplification by fluorescence in situ hybridization (FISH) testing. The purpose of the study is to evaluate the safety and initial evidence of efficacy of intratumoral administration of CF33-hNIS-anti-PD-L1 (CHECKvacc) against mTNBC. Oncolytic virus CHECKvacc intratumoral injection is currently undergoing investigation in patients with mTNBC as a single agent (NCT05081492). The patient was enrolled on the clinical trial CHECKvacc for the Treatment of Metastatic Triple Negative Breast Cancer, received a single dose of CHECKvacc, and discontinued the study due to lack of immediate response. We report a case of a patient with mTNBC who was heavily pretreated and presented with extensive dermal metastasis. Two dermal metastasis biopsies in 2021 showed HER2 0 by IHC. The patient received a single dose of CHECKvacc and discontinued the study due to lack of immediate response. Twenty-five days later, the patient received treatment with T-DXd, and her tumor regressed significantly. The patient's disease-free survival was 10 months (December 2021-October 2022). The sequential treatment with intratumoral injection of CHECKvacc followed by T-DXd may have significant clinical activity in select patients with heavily pretreated mTNBC. ClinicalTrials.gov NCT05081492.

2.
Hum Gene Ther ; 34(1-2): 56-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401498

RESUMO

Optimization of recombinant adeno-associated virus (rAAV) production has important clinical implications, as manufacturing is one of the major challenges for rAAV gene therapy. In this study, we optimized upstream and downstream processing of the rAAV production platform created by an earlier design-of-experiment approach. Our results showed that adding peptones (yeastolate, Trypton N1 or both) increased production yield by 2.8- to 3.4-folds. For downstream processing, a variety of wash buffers for an affinity resin, POROS™ CaptureSelect™ (PCS)-AAVX, were tested for their effects on rAAV8 purity, including NaCl, MgCl2, arginine, Triton X-100, CHAPS, Tween 20, octyl ß-d-1-thioglucopyranoside (OTG), and low pH. The results showed that the OTG wash significantly improved the rAAV purity to 97% and reduced endotoxins to an undetectable level (<0.5 EU/mL), while retaining the yield at 92.3% of the phosphate-buffered saline (PBS) wash. The OTG wash was successfully applied to purifications of rAAV1, rAAV2, and rAAV5 using PCS-AAVX, and rAAV9 using PCS-AAV9. rAAV8 purified with OTG wash showed comparable transduction efficiency in HEK 293T cells to the rAAV8 purified with PBS wash. The optimized rAAV production process yielded 5.5-6.0 × 1014 and 7.6 × 1014 vector genome per liter of HEK 293T cells for purified rAAV8- and rAAV5-EF1α-EGFP (enhanced green fluorescent protein), respectively. The platform described in this study is simple with high yields and purity, which will be beneficial to both research and clinical gene therapy.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Vetores Genéticos/genética , Octoxinol , Transdução Genética
3.
Mol Ther Methods Clin Dev ; 18: 312-320, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32671134

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are a leading gene delivery platform, but vector manufacturing remains a challenge. New methods are needed to increase rAAV yields and reduce costs. Past efforts to improve rAAV production have focused on optimizing a single variable at a time, but this approach does not account for the interactions of multiple factors that contribute to vector generation. Here, we utilized a design-of-experiment (DOE) methodology to optimize rAAV production in a HEK293T suspension cell system. We simultaneously varied the transgene, packaging, and helper plasmid ratios, the total DNA concentration, and the cell density to systematically evaluate the impact of each variable across 52 conditions. The results revealed a unique set of parameters with a lower concentration of transgene plasmid, a higher concentration of packaging plasmid, and a higher cell density than previously described protocols. Using this DOE-optimized protocol, we achieved unpurified yields approaching 3 × 1014 viral genomes (VGs)/L of cell culture. Additionally, we incorporated polyethylene glycol (PEG)-based virus precipitation, pH-mediated protein removal, and affinity chromatography to our downstream processing, enabling average purified yields of >1 × 1014 VGs/L for rAAV-EGFPs across 13 serotypes and capsid variants.

4.
Mol Ther Methods Clin Dev ; 17: 601-611, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32280726

RESUMO

Adeno-associated virus (AAV) has been used extensively as a vector for gene therapy. Despite its widespread use, the mechanisms by which AAV enters the cell and is trafficked to the nucleus are poorly understood. In this study, we performed two pooled, genome-wide screens to identify positive and negative factors modulating AAV2 transduction. Genome-wide libraries directed against all human genes with four designs per gene or eight designs per gene were transduced into U-2 OS cells. These pools were transduced with AAV2 encoding EGFP and sorted based on the intensity of EGFP expression. Analysis of enriched and depleted barcodes in the sorted samples identified several genes that putatively decreased AAV2 transduction. A subset of screen hits was validated in flow cytometry and imaging studies. In addition to KIAA0319L (AAVR), we confirmed the role of two genes, GPR108 and TM9SF2, in mediating viral transduction in eight different AAV serotypes. Interestingly, GPR108 displayed serotype selectivity and was not required for AAV5 transduction. Follow-up studies suggested that GPR108 localized primarily to the Golgi, where it may interact with AAV and play a critical role in mediating virus escape or trafficking. Cumulatively, these results expand our understanding of the process of AAV transduction in different cell types and serotypes.

5.
Clin Cancer Res ; 23(7): 1809-1819, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852701

RESUMO

Purpose: Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV).Experimental Design: Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry. Co-culture of infected glioma cells with macrophages or microglia was used to examine antiviral signaling. Cytokine array gene expression and Ingenuity Pathway Analysis (IPA) helped evaluate changes in macrophage signaling in response to viral infection. TNFα-blocking antibodies and macrophages derived from Bai1-/- mice were used.Results: RAMBO treatment of mice reduced recruitment and activation of macrophages/microglia in mice with brain tumors, and showed increased virus replication compared with rHSVQ1. Cytokine gene expression array revealed that RAMBO significantly altered the macrophage inflammatory response to infected glioma cells via altered secretion of TNFα. Furthermore, we showed that BAI1 mediated macrophage TNFα induction in response to oHSV therapy. Intracranial inoculation of wild-type/RAMBO virus in Bai1-/- or wild-type non-tumor-bearing mice revealed the safety of this approach.Conclusions: We have uncovered a new role for BAI1 in facilitating macrophage anti-viral responses. We show that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophage antiviral response, without reducing safety. Clin Cancer Res; 23(7); 1809-19. ©2016 AACR.


Assuntos
Proteínas Angiogênicas/genética , Glioma/virologia , Inflamação/genética , Macrófagos/virologia , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/terapia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Camundongos , Microglia/metabolismo , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Receptores Acoplados a Proteínas G , Simplexvirus/genética , Simplexvirus/patogenicidade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Onco Targets Ther ; 9: 2769-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274273

RESUMO

The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux(®)) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the toxicity profile of cis-DDP and demonstrated the therapeutic efficacy of the PEP455-Pt bioconjugate in F98 glioma-bearing rats.

7.
Clin Cancer Res ; 21(14): 3274-85, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25829396

RESUMO

PURPOSE: Oncolytic herpes simplex viruses (oHSV) represent a promising therapy for glioblastoma (GBM), but their clinical success has been limited. Early innate immune responses to viral infection reduce oHSV replication, tumor destruction, and efficacy. Here, we characterized the antiviral effects of macrophages and microglia on viral therapy for GBM. EXPERIMENTAL DESIGN: Quantitative flow cytometry of mice with intracranial gliomas (±oHSV) was used to examine macrophage/microglia infiltration and activation. In vitro coculture assays of infected glioma cells with microglia/macrophages were used to test their impact on oHSV replication. Macrophages from TNFα-knockout mice and blocking antibodies were used to evaluate the biologic effects of TNFα on virus replication. TNFα blocking antibodies were used to evaluate the impact of TNFα on oHSV therapy in vivo. RESULTS: Flow-cytometry analysis revealed a 7.9-fold increase in macrophage infiltration after virus treatment. Tumor-infiltrating macrophages/microglia were polarized toward a M1, proinflammatory phenotype, and they expressed high levels of CD86, MHCII, and Ly6C. Macrophages/microglia produced significant amounts of TNFα in response to infected glioma cells in vitro and in vivo. Using TNFα-blocking antibodies and macrophages derived from TNFα-knockout mice, we discovered TNFα-induced apoptosis in infected tumor cells and inhibited virus replication. Finally, we demonstrated the transient blockade of TNFα from the tumor microenvironment with TNFα-blocking antibodies significantly enhanced virus replication and survival in GBM intracranial tumors. CONCLUSIONS: The results of these studies suggest that FDA approved TNFα inhibitors may significantly improve the efficacy of oncolytic virus therapy.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Antineoplásicos/imunologia , Western Blotting , Neoplasias Encefálicas/patologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Glioblastoma/patologia , Herpesvirus Humano 1/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Camundongos Nus , Microglia/imunologia , Vírus Oncolíticos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA