Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 126(1): 123-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619118

RESUMO

According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor-related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-ß (Aß) brain accumulation and drives Alzheimer's disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in Aß transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic Aß clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slco1c1-CreER(T2) Lrp1(fl/fl) mice) and used these mice to accurately evaluate LRP1-mediated Aß BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [125I] Aß(1-42). Additionally, in the 5xFAD mouse model of AD, brain endothelial-specific Lrp1 deletion reduced plasma Aß levels and elevated soluble brain Aß, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic Aß elimination via the BBB. Together, our results suggest that receptor-mediated Aß BBB clearance may be a potential target for treatment and prevention of Aß brain accumulation in AD.


Assuntos
Peptídeos beta-Amiloides/farmacocinética , Barreira Hematoencefálica , Células Endoteliais/fisiologia , Fragmentos de Peptídeos/farmacocinética , Receptores de LDL/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Transcitose
2.
Mol Neurodegener ; 8: 25, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866919

RESUMO

BACKGROUND: The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive. RESULTS: To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout. CONCLUSIONS: In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier.


Assuntos
Neurônios/metabolismo , Receptores de LDL/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Comportamento Animal/fisiologia , Western Blotting , Células Cultivadas , Técnicas de Introdução de Genes , Imunoprecipitação , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA