Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049714

RESUMO

Cyclin-dependent kinase 2 (CDK2) has been garnering considerable interest as a target to develop new cancer treatments and to ameliorate resistance to CDK4/6 inhibitors. However, a selective CDK2 inhibitor has yet to be clinically approved. With the desire to discover novel, potent, and selective CDK2 inhibitors, the phenylsulfonamide moiety of our previous lead compound 1 was bioisosterically replaced with pyrazole derivatives, affording a novel series of N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amines that exhibited potent CDK2 inhibitory activity. Among them, 15 was the most potent CDK2 inhibitor (Ki = 0.005 µM) with a degree of selectivity over other CDKs tested. Meanwhile, this compound displayed sub-micromolar antiproliferative activity against a panel of 13 cancer cell lines (GI50 = 0.127-0.560 µM). Mechanistic studies in ovarian cancer cells revealed that 15 reduced the phosphorylation of retinoblastoma at Thr821, arrested cells at the S and G2/M phases, and induced apoptosis. These results accentuate the potential of the N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amine scaffold to be developed into potent and selective CDK2 inhibitors for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinase 2 Dependente de Ciclina , Relação Estrutura-Atividade , Aminas/farmacologia , Antineoplásicos/farmacologia , Pirazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Estrutura Molecular
2.
Drug Discov Today ; 28(5): 103525, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907320

RESUMO

As the fifth pillar of cancer treatment, immunotherapy has dramatically changed the paradigm of therapeutic strategies by focusing on the host's immune system. In the long road of immunotherapy development, the identification of immune-modulatory effects for kinase inhibitors opened a new chapter in this therapeutic approach. These small molecule inhibitors not only directly eradicate tumors by targeting essential proteins of cell survival and proliferation but can also drive immune responses against malignant cells. This review summarizes the current standings and challenges of kinase inhibitors in immunotherapy, either as a single agent or in a combined modality.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia
3.
Bioorg Med Chem ; 80: 117158, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706608

RESUMO

Deregulation of cyclin-dependent kinase 2 (CDK2) and its activating partners, cyclins A and E, is associated with the pathogenesis of a myriad of human cancers and with resistance to anticancer drugs including CDK4/6 inhibitors. Thus, CDK2 has become an attractive target for the development of new anticancer therapies and for the amelioration of the resistance to CDK4/6 inhibitors. Bioisosteric replacement of the thiazole moiety of CDKI-73, a clinically trialled CDK inhibitor, by a pyrazole group afforded 9 and 19 that displayed potent CDK2-cyclin E inhibition (Ki = 0.023 and 0.001 µM, respectively) with submicromolar antiproliferative activity against a panel of cancer cell lines (GI50 = 0.025-0.780 µM). Mechanistic studies on 19 with HCT-116 colorectal cancer cells revealed that the compound reduced the phosphorylation of retinoblastoma at Ser807/811, arrested the cells at the G2/M phase, and induced apoptosis. These results highlight the potential of the 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine series in developing potent and selective CDK2 inhibitors to combat cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Pirazóis/farmacologia
4.
ChemMedChem ; 18(3): e202200582, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400715

RESUMO

Cyclin-dependent kinases (CDKs) 7 and 9 are deregulated in various types of human cancer and are thus viewed as therapeutic targets. Accordingly, small-molecule inhibitors of both CDKs are highly sought-after. Capitalising on our previous discovery of CDKI-73, a potent CDK9 inhibitor, medicinal chemistry optimisation was pursued. A number of N-pyridinylpyrimidin-2-amines were rationally designed, chemically synthesised and biologically assessed. Among them, N-(6-(4-cyclopentylpiperazin-1-yl)pyridin-3-yl)-4-(imidazo[1,2-a]pyrimidin-3-yl)pyrimidin-2-amine was found to be one of the most potent inhibitors of CDKs 7 and 9 as well as the most effective anti-proliferative agent towards multiple human cancer cell lines. The cellular mode of action of this compound was investigated in MV4-11 acute myeloid leukaemia cells, revealing that the compound dampened the kinase activity of cellular CDKs 7 and 9, arrested the cell cycle at sub-G1 phase and induced apoptosis.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Quinases Ciclina-Dependentes , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Quinase 9 Dependente de Ciclina , Ciclinas/metabolismo , Inibidores de Proteínas Quinases , Linhagem Celular Tumoral
5.
Eur J Med Chem ; 214: 113248, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571827

RESUMO

CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.


Assuntos
Antineoplásicos/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 8 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Piridinas/administração & dosagem , Piridinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
ACS Med Chem Lett ; 10(5): 786-791, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31098000

RESUMO

Specific abrogation of cyclin-dependent kinase 5 (CDK5) activity has been validated as a viable approach for the development of anticancer agents. However, no selective CDK5 inhibitor has been reported to date. Herein, a structure-based in silico screening was employed to identify novel scaffolds from a library of compounds to identify potential CDK5 inhibitors that would be relevant for drug discovery. Hits, representatives of three chemical classes, were identified as inhibitors of CDK5. Structural modification of hit-1 resulted in 29 and 30. Compound 29 is a dual inhibitor of CDK5 and CDK2, whereas 30 preferentially inhibits CDK5. Both leads exhibited anticancer activity against acute myeloid leukemia (AML) cells via a mechanism consistent with targeting cellular CDK5. This study provides an effective strategy for discovery of CDK5 inhibitors as potential antileukemic agents.

7.
Med Chem ; 15(6): 602-623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569866

RESUMO

BACKGROUND: Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS: A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS: These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION: This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Desenho de Fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Relação Estrutura-Atividade
8.
Future Med Chem ; 9(13): 1495-1506, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28795589

RESUMO

AIM: Inhibitors of CDK4/6 have emerged as a powerful class of therapeutics for treatment of several malignancies. We herein describe the identification of a new series of molecules that demonstrated excellent selectivity for CDK4/6 over CDKs1, 7 and 9. RESULTS: Medicinal chemistry optimization led to the discovery of 58 and 69 that inhibited CDK4 and CDK4/6, respectively, with high potency and selectivity, and 58 and 69 exhibited potent antiproliferative activities in a panel of human cancer cell lines including leukemia, and cancers of the breast, colon, ovary, pancreas and prostate. CONCLUSION: Compounds 58 and 69 caused remarkable growth inhibition of melanoma cells, particularly the cells harboring multiple BRAF and NRAS mutations, via a CDK4/6-targeted mechanism of action. [Formula: see text].


Assuntos
Aminas/química , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Tiazóis/química , Aminas/metabolismo , Aminas/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridinas/química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Proteína do Retinoblastoma/metabolismo , Relação Estrutura-Atividade , Tiazóis/metabolismo , Tiazóis/toxicidade
9.
J Med Chem ; 60(5): 1892-1915, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28156111

RESUMO

Cyclin D dependent kinases (CDK4 and CDK6) regulate entry into S phase of the cell cycle and are validated targets for anticancer drug discovery. Herein we detail the discovery of a novel series of 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives as highly potent and selective inhibitors of CDK4 and CDK6. Medicinal chemistry optimization resulted in 83, an orally bioavailable inhibitor molecule with remarkable selectivity. Repeated oral administration of 83 caused marked inhibition of tumor growth in MV4-11 acute myeloid leukemia mouse xenografts without having a negative effect on body weight and showing any sign of clinical toxicity. The data merit 83 as a clinical development candidate.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Disponibilidade Biológica , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Relação Estrutura-Atividade
10.
Endocr Relat Cancer ; 23(12): T211-T226, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27582311

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.


Assuntos
Antineoplásicos/uso terapêutico , Quinase 9 Dependente de Ciclina/fisiologia , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/tratamento farmacológico , Animais , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Humanos , Masculino , Terapia de Alvo Molecular/tendências , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA