Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032184

RESUMO

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Assuntos
Vacinas contra COVID-19/toxicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Cricetinae , Feminino , Glicoproteínas de Membrana/genética , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Suínos , Vacinação , Vacinas Sintéticas/toxicidade , Proteínas do Envelope Viral/genética
2.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974566

RESUMO

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Assuntos
Bleomicina/toxicidade , COVID-19/patologia , Lesão Pulmonar , Ricina/toxicidade , Animais , Chlorocebus aethiops , Comorbidade , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/virologia , Camundongos , Células Vero , Ligação Viral , Internalização do Vírus/efeitos dos fármacos
3.
Nature ; 589(7840): 125-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32906143

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic1. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses. As the protein complement varies among coronaviruses, especially in regard to the variety of accessory proteins, it is crucial to characterize the specific range of SARS-CoV-2 proteins in an unbiased and open-ended manner. Here, using a suite of ribosome-profiling techniques2-4, we present a high-resolution map of coding regions in the SARS-CoV-2 genome, which enables us to accurately quantify the expression of canonical viral open reading frames (ORFs) and to identify 23 unannotated viral ORFs. These ORFs include upstream ORFs that are likely to have a regulatory role, several in-frame internal ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; instead, virus translation dominates host translation because of the high levels of viral transcripts. Our work provides a resource that will form the basis of future functional studies.


Assuntos
Perfilação da Expressão Gênica , Genoma Viral/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , SARS-CoV-2/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Animais , Linhagem Celular , Humanos , Anotação de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas Virais/metabolismo
4.
Emerg Infect Dis ; 25(5): 980-983, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30848724

RESUMO

We report a case of monkeypox in a man who returned from Nigeria to Israel in 2018. Virus was detected in pustule swabs by transmission electron microscopy and PCR and confirmed by immunofluorescence assay, tissue culture, and ELISA. The West Africa monkeypox outbreak calls for increased awareness by public health authorities worldwide.


Assuntos
Doenças Transmissíveis Importadas/diagnóstico , Doenças Transmissíveis Importadas/epidemiologia , Surtos de Doenças , Monkeypox virus , Mpox/diagnóstico , Mpox/epidemiologia , Animais , Biópsia , Chlorocebus aethiops , Doenças Transmissíveis Importadas/história , Doenças Transmissíveis Importadas/virologia , História do Século XXI , Humanos , Israel/epidemiologia , Mpox/história , Mpox/virologia , Pele/patologia , Pele/virologia , Células Vero
5.
Euro Surveill ; 21(26)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27386894

RESUMO

Zika virus RNA presence in serum, whole-blood and urine samples from six Israeli travellers symptomatic for Zika virus disease was examined. Whole-blood samples were positive for as late as 2 months (58 days) post-symptom onset, longer than for urine (26 days) and serum (3 days). These findings suggest the utility of whole blood in Zika infection diagnosis.


Assuntos
Programas de Rastreamento/métodos , RNA Viral/sangue , RNA Viral/urina , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Israel/epidemiologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Avaliação de Sintomas , Viagem , Adulto Jovem , Zika virus/genética , Infecção por Zika virus/epidemiologia
6.
Vaccine ; 31(41): 4569-77, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23928462

RESUMO

Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.


Assuntos
Especificidade de Hospedeiro , Mutação , Vaccinia virus/fisiologia , Replicação Viral , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Recombinação Genética , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/efeitos adversos , Vacina Antivariólica/imunologia , Vacínia/patologia , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Virulência
7.
Virol J ; 10: 229, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23842430

RESUMO

Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.


Assuntos
Vírus da Varíola Bovina/imunologia , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Glicoproteínas de Membrana/imunologia , Vaccinia virus/imunologia , Vacínia/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Portadores de Fármacos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Variação Genética , Vetores Genéticos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Sindbis virus/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA