Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768196

RESUMO

Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Neoplasias , Camundongos , Animais , Vitamina D/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Bactérias , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Neoplasias/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G439-G460, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165492

RESUMO

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-ß), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1ß/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-ß or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1ß/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-ß, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.


Assuntos
Colite Ulcerativa , Interferon Tipo I , Inibidores de Janus Quinases , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa , Inibidores de Caspase , Organoides/metabolismo , Pirina , Caspase 1/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Antígenos de Diferenciação
3.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955491

RESUMO

Crohn's disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host-microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host-microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Doença de Crohn/terapia , Dieta , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamação/terapia
4.
Cell Death Dis ; 12(10): 864, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556638

RESUMO

Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.


Assuntos
Caspase 8/metabolismo , Células Epiteliais/patologia , Interferon gama/metabolismo , Intestinos/patologia , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Biópsia , Morte Celular , Linhagem Celular Tumoral , Colo/patologia , Citoproteção , Células Epiteliais/metabolismo , Humanos , Janus Quinase 2/metabolismo , Mitocôndrias/metabolismo , Organoides/patologia , Interferência de RNA , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
5.
Front Immunol ; 12: 655960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394073

RESUMO

Carcinoembryogenic antigen cellular adhesion molecules (CEACAMs) are intercellular adhesion molecules highly expressed in intestinal epithelial cells. CEACAM1, -3, -5, -6, -7 are altered in patients suffering from colon cancer and inflammatory bowel diseases (IBD), but their role in the onset and pathogenesis of IBD is not well known. Herein, we aim to correlate CEACAM1, -3, -5, -6, -7 expression to the degree of inflammation in pediatric and adult IBD colon biopsies and to examine the regulation of CEACAMs on human intestinal epithelial cell lines (C2BBe1/HT29) by different IBD-associated triggers (cytokines, bacteria/metabolites, emulsifiers) and IBD-drugs (6-Mercaptopurine, Prednisolone, Tofacitinib). Biopsies from patients with pediatric Crohn's disease (CD) and adult ulcerative colitis (UC, active/inactive disease) showed a significant increase in CEACAM3, -5, -6 expression, while CEACAM5 expression was reduced in adult CD patients (active/inactive disease). Intestinal epithelial cells cultured with a pro-inflammatory cytokine cocktail and Adherent-invasive Escherichia coli (AIEC) showed a rapid induction of CEACAM1, -5, -7 followed by a reduced RNA and protein expression overtime and a constant expression of CEACAM3, correlating with IL-8 expression. Cells cultured with the emulsifier polysorbate-80 resulted in a significant induction of CEACAM3, -5, -6, -7 at a late time point, while SCFA treatment reduced CEACAM1, -5, -7 expression. No major alterations in expression of CEACAMs were noted on cells cultured with the commensal Escherichia coli K12 or the pathogen Salmonella typhimurium. IBD drugs, particularly Tofacitinib, significantly reduced cytokine-induced CEACAM1, -3, -5, -6, -7 expression associated with a reduced IL-8 secretion. In conclusion, we provide new evidence on the regulation of CEACAMs by different IBD-associated triggers, identifying a role of CEACAMs in IBD pathogenesis.


Assuntos
Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Biópsia , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Família Multigênica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Sci Rep ; 11(1): 5896, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723368

RESUMO

The mechanisms through which cells of the host innate immune system distinguish commensal bacteria from pathogens are currently unclear. Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) expressed by host cells which recognize microbe-associated molecular patterns (MAMPs) common to both commensal and pathogenic bacteria. Of the different TLRs, TLR2/6 recognize bacterial lipopeptides and trigger cytokines responses, especially to Gram-positive and Gram-negative pathogens. We report here that TLR2 is dispensable for triggering macrophage cytokine responses to different strains of the Gram-positive commensal bacterial species Lactobacillus salivarius. The L. salivarius UCC118 strain strongly upregulated expression of the PRRs, Mincle (Clec4e), TLR1 and TLR2 in macrophages while downregulating other TLR pathways. Cytokine responses triggered by L. salivarius UCC118 were predominantly TLR2-independent but MyD88-dependent. However, macrophage cytokine responses triggered by another Gram-positive commensal bacteria, Bifidobacterium breve UCC2003 were predominantly TLR2-dependent. Thus, we report a differential requirement for TLR2-dependency in triggering macrophage cytokine responses to different commensal Gram-positive bacteria. Furthermore, TNF-α responses to the TLR2 ligand FSL-1 and L. salivarius UCC118 were partially Mincle-dependent suggesting that PRR pathways such as Mincle contribute to the recognition of MAMPs on distinct Gram-positive commensal bacteria. Ultimately, integration of signals from these different PRR pathways and other MyD88-dependent pathways may determine immune responses to commensal bacteria at the host-microbe interface.


Assuntos
Citocinas/metabolismo , Ligilactobacillus salivarius/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Células THP-1 , Receptor 2 Toll-Like/agonistas
7.
Cell Death Dis ; 11(1): 68, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988296

RESUMO

Proteins of the BCL-2 family are evolutionarily conserved modulators of apoptosis that function as sensors of cellular integrity. Over the past three decades multiple BCL-2 family members have been identified, many of which are now fully incorporated into regulatory networks governing the mitochondrial apoptotic pathway. For some, however, an exact role in cell death signalling remains unclear. One such 'orphan' BCL-2 family member is BCL-G (or BCL2L14). In this study we analysed gastrointestinal expression of human BCL-G in health and disease states, and investigated its contribution to inflammation-induced tissue damage by exposing intestinal epithelial cells (IEC) to IFN-γ and TNF-α, two pro-inflammatory mediators associated with gut immunopathology. We found that both BCL-G splice variants - BCL-GS (short) and BCL-GL (long) - were highly expressed in healthy gut tissue, and that their mRNA levels decreased in active inflammatory bowel diseases (for BCL-GS) and colorectal cancer (for BCL-GS/L). In vitro studies revealed that IFN-γ and TNF-α synergised to upregulate BCL-GS/L and to trigger apoptosis in colonic epithelial cell lines and primary human colonic organoids. Using RNAi, we showed that synergistic induction of IEC death was STAT1-dependent while optimal expression of BCL-GS/L required STAT1, NF-κB/p65 and SWI/SNF-associated chromatin remodellers BRM and BRG1. To test the direct contribution of BCL-G to the effects of IFN-γ and TNF-α on epithelial cells, we used RNAi- and CRISPR/Cas9-based perturbations in parallel with isoform-specific overexpression of BCL-G, and found that BCL-G was dispensable for Th1 cytokine-induced apoptosis of human IEC. Instead, we discovered that depletion of BCL-G differentially affected secretion of inflammatory chemokines CCL5 and CCL20, thus uncovering a non-apoptotic immunoregulatory function of this BCL-2 family member. Taken together, our data indicate that BCL-G may be involved in shaping immune responses in the human gut in health and disease states through regulation of chemokine secretion rather than intestinal apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL5/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células Epiteliais/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , NF-kappa B/metabolismo , Organoides/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Cytokine Growth Factor Rev ; 47: 21-31, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133507

RESUMO

Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Animais , Humanos
9.
Int J Nanomedicine ; 14: 1027-1038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799920

RESUMO

Colorectal cancer is the abnormal growth of cells in colon or rectum. Recent findings have acknowledged the role of bacterial infection and chronic inflammation in colorectal cancer initiation and progression. In order to detect and treat precancerous lesions, new tools are required, which may help to prevent or identify colorectal cancer at an early stage. To date, several different screening tests are available, including endoscopy, stool-based blood tests, and radiology-based tests. However, these analyses either lack sensitivity or are of an invasive nature. The use of fluorescently labeled probes can increase the detection sensitivity. However, autofluorescence, photobleaching, and photodamage are commonly encountered problems with fluorescence imaging. Upconverting nanoparticles (UCNPs) are recently developed lanthanide-doped nanocrystals that can be used as light-triggered luminescent probes and in drug delivery systems. In this review, we comprehensively summarize the recent developments and address future prospects of UCNP-based applications for diagnostics and therapeutic approaches associated with intestinal infection and colorectal cancer.


Assuntos
Neoplasias Colorretais/diagnóstico , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Luminescência , Imagem Óptica , Propriedades de Superfície
10.
Appl Microbiol Biotechnol ; 102(24): 10645-10663, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306201

RESUMO

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


Assuntos
Bifidobacterium animalis/crescimento & desenvolvimento , Bifidobacterium animalis/genética , Microbiologia de Alimentos/métodos , Leite/microbiologia , Animais , Bifidobacterium animalis/efeitos dos fármacos , Metabolismo dos Carboidratos , Resistência Microbiana a Medicamentos , Feminino , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Camundongos Endogâmicos BALB C , Probióticos
11.
Biochim Biophys Acta ; 1847(10): 1254-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143176

RESUMO

Abnormal accumulation of oncometabolite fumarate and succinate is associated with inhibition of mitochondrial function and carcinogenesis. By competing with α-ketoglutarate, oncometabolites also activate hypoxia inducible factors (HIFs), which makes oncometabolite mimetics broadly utilised in hypoxia research. We found that dimethyloxalylglycine (DMOG), a synthetic analogue of α-ketoglutarate, commonly used to induce HIF signalling, inhibits O2 consumption in cancer cell lines HCT116 and PC12, well before activation of HIF pathways. A rapid suppression of cellular respiration was accompanied by a decrease in histone H4 lysine 16 acetylation and not abolished by double knockdown of HIF-1α and HIF-2α. In agreement with this, production of NADH and state 3 respiration in isolated mitochondria were down-regulated by the de-esterified DMOG derivative, N-oxalylglycine. Exploring the roles of DMOG as a putative inhibitor of glutamine/α-ketoglutarate metabolic axis, we found that the observed suppression of OxPhos and compensatory activation of glycolytic ATP flux make cancer cells vulnerable to combined treatment with DMOG and inhibitors of glycolysis. On the other hand, DMOG treatment impairs deep cell deoxygenation in 3D tissue culture models, demonstrating a potential to relieve functional stress imposed by deep hypoxia on tumour, ischemic or inflamed tissues. Indeed, using a murine model of colitis, we found that O2 availability in the inflamed colon tissue rapidly increased after application of DMOG, which could contribute to the known therapeutic effect of this compound. Overall, our results provide new insights into the relationship between mitochondrial function, O2 availability, metabolic reprogramming and associated diseases.

12.
Cytokine Growth Factor Rev ; 25(6): 715-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24803013

RESUMO

Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1ß, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy. Besides their acknowledged role in mounting microbial induced host responses, a crucial role in maintenance of intestinal homeostasis was revealed in inflammasome deficient mice. Further, abnormal activation of these functions appears to contribute to the pathology of intestinal inflammation including IBD and colitis-associated cancer. Herein, the current literature implicating the inflammasomes, microbiota and IBD is comprehensively reviewed.


Assuntos
Inflamassomos/imunologia , Doenças Inflamatórias Intestinais/imunologia , Animais , Bactérias/imunologia , Modelos Animais de Doenças , Humanos , Inflamassomos/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Camundongos , Microbiota/imunologia
13.
Innate Immun ; 20(7): 675-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24045337

RESUMO

There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response; however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with LPS, suggesting a role in inflammation. Furthermore, we showed LXR expression to be increased in vivo in dextrane sulphate sodium-induced colitis. LXR activation also suppressed production of IL-12p40, IL-12p70, IL-27 and IL-23 in murine-derived DC following stimulation with LPS, and specifically targeted the p35, p40 and EBI3 subunits of the IL-12 cytokine family, which are under the control of the NF-κB subunit p50 (NF-κBp50). Finally, we demonstrated that LXR can associate with NF-κBp50 in DC and that LXR activation prevents translocation of the p50 subunit into the nucleus. In summary, our study indicates that LXR can specifically suppress the IL-12 family of cytokines though its association with NF-κBp50 and highlights its potential as a therapeutic target for chronic inflammatory diseases.


Assuntos
Interleucina-12/biossíntese , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Receptores Nucleares Órfãos/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/biossíntese , Citoplasma/metabolismo , Citoplasma/patologia , Inflamação/metabolismo , Inflamação/patologia , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
14.
In. Administración de los Servicios de Salud del Estado (Uruguay : 2007-). Hacia una nueva dinámica institucional: [2010-2014]. [Montevideo?], ASSE, [2014?]. p.101-118, ilus.
Monografia em Espanhol | LILACS, UY-BNMED, BNUY | ID: biblio-1354071
15.
Nat Immunol ; 14(9): 927-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23892723

RESUMO

Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation.


Assuntos
Colite/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Citrobacter rodentium/imunologia , Colite/genética , Colite/imunologia , Colite/microbiologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Adulto Jovem
16.
Cytokine Growth Factor Rev ; 24(2): 91-104, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23102645

RESUMO

Pattern recognition receptors (PRRs) are a family of germline encoded receptors responsible for the detection of "pathogen associated molecular patterns" (PAMPs) or host derived "damage associated molecular patterns" (DAMPs) which induce innate immune signalling to generate a pro-inflammatory profile within the host. Four main classes of PRRs are recognised, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin receptors (CLRs). Abnormal activation of PRRs has been implicated in various autoimmune and inflammatory conditions including rheumatoid arthritis and asthma. Recent growing evidence has implicated these PRRs as contributory elements to the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Here, the current literature which implicates PRRs in IBD and CAC is comprehensively reviewed.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Humanos , Doenças Inflamatórias Intestinais/complicações , Neoplasias/etiologia , Neoplasias/imunologia
17.
Infect Immun ; 81(2): 460-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208605

RESUMO

Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Células Matadoras Naturais/imunologia , Mucosa/imunologia , Animais , Ceco/imunologia , Citrobacter rodentium/patogenicidade , Colo/imunologia , Citocinas/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Fatores Imunológicos/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL
18.
Inflamm Bowel Dis ; 16(10): 1778-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20848470

RESUMO

BACKGROUND: Ulcerative colitis is associated with increased colon permeability resulting in bacterial translocation into the lamina propria. We investigate the importance of the Toll-like receptor (TLR) regulating protein IL-1 receptor-associated kinase M (IRAK-M) using the erosive dextran sulfate sodium (DSS)-induced model of colitis. METHODS: IRAK-M-competent and -incompetent mice were treated with 3% DSS for 5 days followed by 2 days of regular drinking water. Clinical signs of disease were followed for 7 days. At day 7 the mice were sacrificed and plasma and tissue were collected for histopathological examination and analyses of the production of cytokines and chemokines as well as expression of T-cell transcription factors. RESULTS: At day 7 IRAK-M-deficient mice display a reduced total body weight (77.1 ± 2.1 versus 88.5 ± 2.0, *P = 0.002) and an increased macroscopical (2.7 ± 0.2 versus 1.6 ± 0.1, *P = 0.002) and histopathological (6.0 ± 0 versus 3.3 ± 0.5, *P = < 0.001) colon score compared to wildtype mice. Furthermore, IRAK-M-deficient mice have increased colon mRNA expression of proinflammatory cytokines and increased tumor necrosis factor concentrations (41.1 ± 13.5 versus 12.8 ± 2.0 pg/mL, *P = 0.010) in plasma. CONCLUSIONS: This is the first report examining the role of IRAK-M in colitis. We find that IRAK-M is of critical importance in downregulating induction and progression of DSS colitis, and thereby suggesting that IRAK-M might be a target for future interventional therapies.


Assuntos
Colite/prevenção & controle , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Animais , Colite/induzido quimicamente , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Pharmacol Res ; 58(3-4): 222-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18812224

RESUMO

The aim of this study was to investigate the relevance of mouse ex vivo cultures as a first screening model for new therapeutic agents of Inflammatory Bowel Disease (IBD). Two murine models (dextran sodium sulphate (DSS)-induced colitis and Galphai2-deficient mice) and two anti-inflammatory agents (methyl-prednisolone and the proteasome inhibitor MG132) were evaluated. The in vivo effects of methyl-prednisolone were assessed in both models. Ex vivo colonic tissue from both mouse models were cultured in the presence or absence of the drugs and TaqMan Low-Density arrays were used to assess the regulation of inflammatory genes before and after drug treatment. Colitis induced a similar inflammatory gene profile in both mouse models in in vivo studies and in ex vivo cultures. The differences encountered reflected the different phases of colitis in the models, e.g. innate cytokine/chemokine profile in the DSS model and T cell related markers in Galphai2-deficient mice. After steroid treatment, a similar pattern of genes was suppressed in the two mouse models. We confirmed the suppression of inflammatory gene expression for IL-1beta, IL-6 and iNOS in ex vivo and in vivo colons from both mouse models by quantitative RT-PCR. Importantly, the inflammatory responses in the murine ex vivo culture system reflected the in vivo response in the inflamed colonic tissue as assessed by changes in inflammatory gene expression, suggesting that the murine culture system can be used for validation of future IBD therapies.


Assuntos
Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Primers do DNA , Sulfato de Dextrana , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Leupeptinas/farmacologia , Metilprednisolona/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA