Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 44(1): 178-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201362

RESUMO

BACKGROUND/OBJECTIVES: Hypothalamic neurons play a major role in the control of body mass. Obese subjects present radiologic signs of gliosis in the hypothalamus, which may reflect the damage or loss of neurons involved in whole-body energy homeostasis. It is currently unknown if hypothalamic gliosis (1) differs between obese nondiabetic (ND) and obese diabetic subjects (T2D) or (2) is modified by extensive body mass reduction via Roux-n-Y gastric bypass (RYGB). SUBJECTS/METHODS: Fifty-five subjects (all female) including lean controls (CT; n = 13), ND (n = 28), and T2D (n = 14) completed at least one study visit. Subjects underwent anthropometrics and a multi-echo MRI sequence to measure mean bilateral T2 relaxation time in the mediobasal hypothalamus (MBH) and two reference regions (amygdala and putamen). The obese groups underwent RYGB and were re-evaluated 9 months later. Analyses were by linear mixed models. RESULTS: Analyses of T2 relaxation time at baseline showed a group by region interaction only in the MBH (P < 0.0001). T2D had longer T2 relaxation times compared to either CT or ND groups. To examine the effects of RYGB on hypothalamic gliosis a three-way (group by region by time) mixed effects model adjusted for age was executed. Group by region (P < 0.0001) and region by time (P = 0.0005) interactions were significant. There was a reduction in MBH relaxation time by RYGB, and, although the T2D group still had higher T2 relaxation time overall compared to the ND group, the T2D group had significantly lower T2 relaxation time after surgery and the ND group showed a trend. The degree of reduction in MBH T2 relaxation time by RYGB was unrelated to clinical outcomes. CONCLUSION: T2 relaxation times, a marker of hypothalamic gliosis, are higher in obese women with T2D and are reduced by RYGB-induced weight loss.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/complicações , Gliose , Hipotálamo , Obesidade , Feminino , Gliose/diagnóstico por imagem , Gliose/patologia , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Imageamento por Ressonância Magnética , Obesidade/complicações , Obesidade/cirurgia , Resultado do Tratamento
2.
Endocrinology ; 155(8): 2858-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914942

RESUMO

Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.


Assuntos
Núcleo Arqueado do Hipotálamo , Dieta Hiperlipídica/efeitos adversos , Gliose/etiologia , Doenças Hipotalâmicas/etiologia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Adiposidade , Animais , Ingestão de Alimentos , Doenças Hipotalâmicas/prevenção & controle , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Redução de Peso
3.
Hepatology ; 55(4): 1103-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21994008

RESUMO

UNLABELLED: Childhood obesity is associated with type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). Recent studies have found associations between vitamin D deficiency (VDD), insulin resistance (IR), and NAFLD among overweight children. To further explore mechanisms mediating these effects, we fed young (age 25 days) Sprague-Dawley rats with a low-fat diet (LFD) alone or with vitamin D depletion (LFD+VDD). A second group of rats was exposed to a Westernized diet (WD: high-fat/high-fructose corn syrup) that is more typically consumed by overweight children, and was either replete (WD) or deficient in vitamin D (WD+VDD). Liver histology was assessed using the nonalcoholic steatohepatitis (NASH) Clinical Research Network (CRN) scoring system and expression of genes involved in inflammatory pathways were measured in liver and visceral adipose tissue after 10 weeks. In VDD groups, 25-OH-vitamin D levels were reduced to 29% (95% confidence interval [CI]: 23%-36%) compared to controls. WD+VDD animals exhibited significantly greater hepatic steatosis compared to LFD groups. Lobular inflammation as well as NAFLD Activity Score (NAS) were higher in WD+VDD versus the WD group (NAS: WD+VDD 3.2 ± 0.47 versus WD 1.50 ± 0.48, P < 0.05). Hepatic messenger RNA (mRNA) levels of Toll-like receptors (TLR)2, TLR4, and TLR9, as well as resistin, interleukins (IL)-1ß, IL-4, and IL-6 and oxidative stress marker heme oxygenase (HO)-1, were higher in WD+VDD versus WD animals (P < 0.05). Logistic regression analyses showed significant associations between NAS score and liver mRNA levels of TLRs 2, 4, and 9, endotoxin receptor CD14, as well as peroxisome proliferator activated receptor (PPAR)γ, and HO-1. CONCLUSION: VDD exacerbates NAFLD through TLR-activation, possibly by way of endotoxin exposure in a WD rat model. In addition it causes IR, higher hepatic resistin gene expression, and up-regulation of hepatic inflammatory and oxidative stress genes.


Assuntos
Fígado Gorduroso/epidemiologia , Fígado Gorduroso/fisiopatologia , Fígado/metabolismo , Obesidade/epidemiologia , Resistina/metabolismo , Receptores Toll-Like/metabolismo , Deficiência de Vitamina D/epidemiologia , Animais , Comorbidade , Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Resistência à Insulina/fisiologia , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica , Obesidade/etiologia , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Deficiência de Vitamina D/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA