Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Commun Signal ; 22(1): 501, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39415254

RESUMO

Protein kinases are critical components of a myriad biological processes and strongly associated with various diseases. While kinase research has been a point of focus in biomedical research for several decades, a large portion of the kinome is still considered understudied or "dark," because prior research is targeted towards a subset of kinases with well-established roles in cellular processes. We present an empirical and in-silico hybrid workflow to extend the functional knowledge of understudied kinases. Utilizing multiplex peptide activity arrays and robust in-silico analyses, we extended the functional knowledge of five dark tyrosine kinases (AATK, EPHA6, INSRR, LTK, TNK1) and explored their roles in schizophrenia, Alzheimer's dementia (AD), and major depressive disorder (MDD). Using this hybrid approach, we identified 195 novel kinase-substrate interactions with variable degrees of affinity and linked extended functional networks for these kinases to biological processes that are impaired in psychiatric and neurological disorders. Biochemical assays and mass spectrometry were used to confirm a putative substrate of EPHA6, an understudied dark tyrosine kinase. We examined the EPHA6 network and knowledgebase in schizophrenia using reporter peptides identified and validated from the multi-plex array with high affinity for phosphorylation by EPHA6. Identification and confirmation of putative substrates for understudied kinases provides a wealth of actionable information for the development of new drug treatments as well as exploration of the pathophysiology of disease states using signaling network approaches.


Assuntos
Peptídeos , Humanos , Peptídeos/metabolismo , Peptídeos/química , Esquizofrenia/metabolismo , Esquizofrenia/enzimologia , Fosforilação , Análise Serial de Proteínas , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Transtorno Depressivo Maior/metabolismo
2.
Cancer Res Commun ; 4(8): 2215-2227, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087397

RESUMO

Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis. Genetic inactivation studies to map the signaling network indicated that both S6K1 and S6K2 transmit growth signals in PTEN-deficient GBM. Kinome-wide ATP binding analysis in inhibitor-treated cells revealed that LY-2584702 directly inhibited S6K1, and substrate phosphorylation studies showed that BMS-777607 inactivation of upstream AXL collaborated to reduce S6K2-mediated signal transduction. Thus, combination targeting of S6K1 and AXL provides a kinase-directed therapeutic approach that circumvents signal transduction redundancy to interrupt metabolic function and reduce growth of PTEN-deficient GBM. SIGNIFICANCE: Therapy for glioblastoma would be advanced by incorporating molecularly targeted kinase-directed agents, similar to standard of care strategies in other tumor types. Here, we identify a kinase targeting approach to inhibit the metabolism and growth of glioblastoma.


Assuntos
Receptor Tirosina Quinase Axl , Glioblastoma , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas , Pirimidinas , Receptores Proteína Tirosina Quinases , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Aminopiridinas , Piridonas
3.
Sci Adv ; 10(35): eadj3010, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213358

RESUMO

We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure-independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning-based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth-associated inflammation.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Humanos , Transcriptoma , Aprendizado de Máquina , Relação Estrutura-Atividade
4.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293110

RESUMO

Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.

5.
J Biol Chem ; 299(5): 104663, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003503

RESUMO

Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.


Assuntos
Carcinoma de Células Renais , Exocitose , Neoplasias Renais , Lisossomos , Proteínas Associadas aos Microtúbulos , Zinco , Animais , Humanos , Autofagia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Zinco/metabolismo , Complexo Repressor Polycomb 2 , Epigênese Genética
6.
Nat Commun ; 13(1): 4678, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945222

RESUMO

There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.


Assuntos
COVID-19 , Neoplasias , COVID-19/genética , Biologia Computacional , Humanos , Neoplasias/genética , Software , Transcriptoma , Fluxo de Trabalho
7.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988680

RESUMO

LC3s are canonical proteins necessary for the formation of autophagosomes. We have previously established that two paralogs, LC3B and LC3C, have opposite activities in renal cancer, with LC3B playing an oncogenic role and LC3C a tumor-suppressing role. LC3C is an evolutionary late gene present only in higher primates and humans. Its most distinct feature is a C-terminal 20-amino acid peptide cleaved in the process of glycine 126 lipidation. Here, we investigated mechanisms of LC3C-selective autophagy. LC3C autophagy requires noncanonical upstream regulatory complexes that include ULK3, UVRAG, RUBCN, PIK3C2A, and a member of ESCRT, TSG101. We established that postdivision midbody rings (PDMBs) implicated in cancer stem-cell regulation are direct targets of LC3C autophagy. LC3C C-terminal peptide is necessary and sufficient to mediate LC3C-dependent selective degradation of PDMBs. This work establishes a new noncanonical human-specific selective autophagic program relevant to cancer stem cells.


Assuntos
Autofagossomos/genética , Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Peptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteólise , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética
8.
Mol Cell Oncol ; 8(2): 1859917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860076

RESUMO

Tobacco smoking (TS) results in reprogramming of major metabolic pathways, including glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and metabolism of aspartate, glutamate and glutamine in clear cell renal cell carcinoma (ccRCC). TS alters the distribution and activities of cadmium, arsenic and copper in a manner mechanistically supporting metabolic remodeling. Alterations in metabolism and metal distribution identify new actionable targets for treatment of ccRCC.

9.
Genes (Basel) ; 12(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803184

RESUMO

The promise of personalized medicine is a therapeutic advance where tumor signatures obtained from different omics platforms, such as genomics, transcriptomics, proteomics, and metabolomics, in addition to environmental factors including metals and metalloids, are used to guide the treatments. Clear cell renal carcinoma (ccRCC), the most common type of kidney cancer, can be sporadic (frequently) or genetic (rare), both characterized by loss of the von Hippel-Lindau (VHL) gene that controls hypoxia inducible factors. Recently, several genomic subtypes were identified with different prognoses. Transcriptomics, proteomics, metabolomics and metallomic data converge on altered metabolism as the principal feature of the disease. However, in view of multiple biochemical alterations and high level of tumor heterogeneity, identification of clearly defined subtypes is necessary for further improvement of treatments. In the future, single-cell combined multi-omics approaches will be the next generation of analyses gaining deeper insights into ccRCC progression and allowing for design of specific signatures, with better prognostic/predictive clinical applications.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Animais , Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/genética , Medicina de Precisão , Prognóstico , Transcriptoma/genética
10.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32970633

RESUMO

BACKGROUNDClear cell renal cell carcinoma (ccRCC) is the most common histologically defined renal cancer. However, it is not a uniform disease and includes several genetic subtypes with different prognoses. ccRCC is also characterized by distinctive metabolic reprogramming. Tobacco smoking (TS) is an established risk factor for ccRCC, with unknown effects on tumor pathobiology.METHODSWe investigated the landscape of ccRCCs and paired normal kidney tissues using integrated transcriptomic, metabolomic, and metallomic approaches in a cohort of white males who were long-term current smokers (LTS) or were never smokers (NS).RESULTSAll 3 Omics domains consistently identified a distinct metabolic subtype of ccRCCs in LTS, characterized by activation of oxidative phosphorylation (OXPHOS) coupled with reprogramming of the malate-aspartate shuttle and metabolism of aspartate, glutamate, glutamine, and histidine. Cadmium, copper, and inorganic arsenic accumulated in LTS tumors, showing redistribution among intracellular pools, including relocation of copper into the cytochrome c oxidase complex. A gene expression signature based on the LTS metabolic subtype provided prognostic stratification of The Cancer Genome Atlas ccRCC tumors that was independent of genomic alterations.CONCLUSIONThe work identified the TS-related metabolic subtype of ccRCC with vulnerabilities that can be exploited for precision medicine approaches targeting metabolic pathways. The results provided rationale for the development of metabolic biomarkers with diagnostic and prognostic applications using evaluation of OXPHOS status. The metallomic analysis revealed the role of disrupted metal homeostasis in ccRCC, highlighting the importance of studying effects of metals from e-cigarettes and environmental exposures.FUNDINGDepartment of Defense, Veteran Administration, NIH, ACS, and University of Cincinnati Cancer Institute.


Assuntos
Carcinoma de Células Renais/metabolismo , Reprogramação Celular , Neoplasias Renais/metabolismo , Fumar Tabaco/efeitos adversos , Fumar Tabaco/metabolismo , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Fumar Tabaco/patologia
11.
Vaccines (Basel) ; 8(4)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291616

RESUMO

The study of immune evasion has gained a well-deserved eminence in cancer research by successfully developing a new class of therapeutics, immune checkpoint inhibitors, such as pembrolizumab and nivolumab, anti-PD-1 antibodies. By aiming at the immune checkpoint blockade (ICB), these new therapeutics have advanced cancer treatment with notable increases in overall survival and tumor remission. However, recent reports reveal that 40-60% of patients fail to benefit from ICB therapy due to acquired resistance or tumor relapse. This resistance may stem from increased expression of co-inhibitory immune checkpoints or alterations in the tumor microenvironment that promotes immune suppression. Because these mechanisms are poorly elucidated, the transcription factors that regulate immune checkpoints, known as "master regulators", have garnered interest. These include AP-1, IRF-1, MYC, and STAT3, which are known to regulate PD/PD-L1 and CTLA-4. Identifying these and other potential master regulators as putative therapeutic targets or biomarkers can be facilitated by mining cancer literature, public datasets, and cancer genomics resources. In this review, we describe recent advances in master regulator identification and characterization of the mechanisms underlying immune checkpoints regulation, and discuss how these master regulators of immune checkpoint molecular expression can be targeted as a form of auxiliary therapeutic strategy to complement traditional immunotherapy.

12.
Nucleic Acids Res ; 48(W1): W85-W93, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469073

RESUMO

Rapid progress in proteomics and large-scale profiling of biological systems at the protein level necessitates the continued development of efficient computational tools for the analysis and interpretation of proteomics data. Here, we present the piNET server that facilitates integrated annotation, analysis and visualization of quantitative proteomics data, with emphasis on PTM networks and integration with the LINCS library of chemical and genetic perturbation signatures in order to provide further mechanistic and functional insights. The primary input for the server consists of a set of peptides or proteins, optionally with PTM sites, and their corresponding abundance values. Several interconnected workflows can be used to generate: (i) interactive graphs and tables providing comprehensive annotation and mapping between peptides and proteins with PTM sites; (ii) high resolution and interactive visualization for enzyme-substrate networks, including kinases and their phospho-peptide targets; (iii) mapping and visualization of LINCS signature connectivity for chemical inhibitors or genetic knockdown of enzymes upstream of their target PTM sites. piNET has been built using a modular Spring-Boot JAVA platform as a fast, versatile and easy to use tool. The Apache Lucene indexing is used for fast mapping of peptides into UniProt entries for the human, mouse and other commonly used model organism proteomes. PTM-centric network analyses combine PhosphoSitePlus, iPTMnet and SIGNOR databases of validated enzyme-substrate relationships, for kinase networks augmented by DeepPhos predictions and sequence-based mapping of PhosphoSitePlus consensus motifs. Concordant LINCS signatures are mapped using iLINCS. For each workflow, a RESTful API counterpart can be used to generate the results programmatically in the json format. The server is available at http://pinet-server.org, and it is free and open to all users without login requirement.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software , Animais , Gráficos por Computador , Enzimas/metabolismo , Humanos , Internet , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Fluxo de Trabalho
13.
PLoS One ; 15(3): e0229801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163428

RESUMO

We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Benzimidazóis/síntese química , Benzimidazóis/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Pain ; 20(7): 771-785, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639570

RESUMO

We have reported child anxiety sensitivity (Child Anxiety Sensitivity Index [CASI]) predicts chronic postsurgical pain (CPSP). Herein, we evaluated DNA methylation profiles to understand the gene-environment interactions underlying CPSP and CASI, to identify shared, enriched, genomic pathways. In 73 prospectively recruited adolescents undergoing spine fusion, preoperative CASI and pain data over 12 months after surgery were collected. DNA from the peripheral blood of evaluable subjects with (n = 16) and without CPSP (n = 40) were analyzed using MethylationEPIC arrays. We identified 637 and 2,445 differentially DNA methylated positions (DMPs) associated with CPSP and CASI, respectively (P ≤ .05). Ingenuity pathway analysis of 39 genes with DMPs for both CPSP and CASI revealed enrichment of several canonical pathways, including GABA receptor (P = .00016 for CPSP; P =.0008 for CASI) and dopamine-DARPP32 feedback in cyclic adenosine monophosphate (P = .004 for CPSP and P =.00003 for CASI) signaling. Gene-gene interaction network enrichment analysis revealed participation of pathways in cell signaling, molecular transport, metabolism, and neurologic diseases (P < 10-8). Bioinformatic approaches to identify histone marks and transcription factor (TF) binding events underlying DMPs, showed their location in active regulatory regions in pain pathway relevant brain cells. Using Enrichr/Pinet enrichment and Library of Integrated Network-Based Cellular Signatures knockdown signatures, we identified TFs regulating genes with DMPs in association with CPSP and CASI. In conclusion, we identified epigenetically enriched pathways associated with CPSP and anxiety sensitivity in children undergoing surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward and pain. This pilot study provides new epigenetic insights into the pathophysiology of CPSP and a basis for future studies in biomarker development and targetable interventions. PERSPECTIVE: Differential DNA methylation in regulatory genomic regions enriching shared neural pathways were associated with CPSP and CASI in adolescents undergoing spine surgery. Our findings support GABA hypofunction and the roles of the dopamine-DARPP32 pathway in emotion/reward contributing to behavioral maintenance of pain 10 to 12 months after surgery.


Assuntos
Ansiedade , Dor Crônica/fisiopatologia , Metilação de DNA/genética , Interação Gene-Ambiente , Dor Pós-Operatória/fisiopatologia , Adolescente , Ansiedade/genética , Criança , Dor Crônica/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/genética , Projetos Piloto , Estudos Prospectivos , Escoliose/cirurgia , Fusão Vertebral/efeitos adversos
15.
Leukemia ; 33(3): 749-761, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30254339

RESUMO

Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Benzilaminas , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Ciclamos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
16.
Sci Rep ; 5: 14538, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26419724

RESUMO

Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 µM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.


Assuntos
Sítios de Ligação , Domínio Catalítico , Resistência a Medicamentos/genética , Janus Quinase 2/química , Janus Quinase 2/genética , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Códon , Resistência a Múltiplos Medicamentos/genética , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Nitrilas , Domínios e Motivos de Interação entre Proteínas/genética , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas , Pirrolidinas/química , Pirrolidinas/farmacologia , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/farmacologia
17.
Lab Invest ; 95(5): 546-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25706094

RESUMO

Disorders of the prostate and lower urinary tract are common in elderly men. We investigated the role of metallothionein-1 (MT1) in prostate carcinogenesis by generating a prostate-specific, MT1-expressing mouse. Unexpectedly, genomic analyses revealed that a 12.1-kb genomic region harboring several conserved noncoding elements was unintentionally deleted, upstream of the transgene integration site in the mouse, which we named it 12.1ΔMT1. Male 12.1ΔMT1 mice chronically treated with testosterone (T) plus 17ß-estradiol (E2) to induce prostate cancer exhibited no evidence of precancerous or cancerous lesions. Instead, most of them exhibited a bladder outlet obstruction (BOO) phenotype not observed in treated wild-type (WT) mice. Thus, we hypothesized that 12.1ΔMT1 is a novel model for studying the hormonal requirement for BOO induction. Adult male 12.1ΔMT1 and WT mice were treated with T, E2, bisphenol A (BPA), T+E2, or T+BPA for up to 6 months. Histologic and immunohistochemical analysis of the prostate, bladder, and urethra were performed. No significant prostate pathologies were observed in WT or 12.1ΔMT1 mice treated with any of the hormone regimens. As expected, prostatic regression occurred in all E2-treated animals (WT and 12.1ΔMT1). Of great interest, despite a small prostate, 100% of E2-treated 12.1ΔMT1 mice, but only 40% of E2-treated WT mice, developed severe BOO (P<0.01). In contrast, T+E2 treatment was less effective than E2 treatment in inducing severe BOO in 12.1ΔMT1 mice (68%, P<0.05) and was completely ineffective in WT animals. Similarly, T, BPA, and T+BPA treatments did not induce BOO in either WT or 12.1ΔMT1 mice. The BOO pathology includes a thinner detrusor wall, narrowing of bladder neck and urethral lumen, and basal cell hyperplasia in the bladder body and urethra. These findings indicate that 12.1ΔMT1 mice exhibit enhanced susceptibility to E2-induced BOO that is independent of prostate enlargement but that is attenuated by the conjoint treatment with T.


Assuntos
Estradiol/farmacologia , Metalotioneína/genética , Obstrução do Colo da Bexiga Urinária/genética , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Próstata/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo , Uretra/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
18.
Cancer Cell ; 26(5): 738-53, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25517751

RESUMO

Autophagy promotes tumor growth by generating nutrients from the degradation of intracellular structures. Here we establish, using shRNAs, a dominant-negative mutant, and a pharmacologic inhibitor, mefenamic acid (MFA), that the Transient Receptor Potential Melastatin 3 (TRPM3) channel promotes the growth of clear cell renal cell carcinoma (ccRCC) and stimulates MAP1LC3A (LC3A) and MAP1LC3B (LC3B) autophagy. Increased expression of TRPM3 in RCC leads to Ca(2+) influx, activation of CAMKK2, AMPK, and ULK1, and phagophore formation. In addition, TRPM3 Ca(2+) and Zn(2+) fluxes inhibit miR-214, which directly targets LC3A and LC3B. The von Hippel-Lindau tumor suppressor (VHL) represses TRPM3 directly through miR-204 and indirectly through another miR-204 target, Caveolin 1 (CAV1).


Assuntos
Autofagia , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , MicroRNAs/fisiologia , Canais de Cátion TRPM/genética , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Camundongos Nus , Transplante de Neoplasias , Oncogenes , Interferência de RNA , Canais de Cátion TRPM/metabolismo , Carga Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
19.
PLoS One ; 8(7): e70030, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922894

RESUMO

Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy.


Assuntos
Estrona/metabolismo , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Western Blotting , Estrona/genética , Humanos , Técnicas In Vitro , Neoplasias Renais/genética , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor Von Hippel-Lindau/genética
20.
Cell Physiol Biochem ; 31(2-3): 257-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23466888

RESUMO

BACKGROUND/AIMS: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. METHODS: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. RESULTS: CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 µM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. CONCLUSION: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET action on NKCC1 and K+ channels may involve PKC-regulated mechanisms; however, limited sequence homologies to BH1-like motifs cannot exclude direct effects.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Benzofenantridinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Ouabaína/farmacologia , Fosforilação , Potássio/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rubídio/metabolismo , Alinhamento de Sequência , Simportadores de Cloreto de Sódio-Potássio/química , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Suínos , Trítio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA