Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682778

RESUMO

Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.


Assuntos
Ferritinas , Ferro , Transporte de Elétrons , Ferritinas/metabolismo , Ferro/metabolismo , Cinética , Riboflavina/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 12(1): 7137, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880210

RESUMO

Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics. We set out to map the optimal strategy for developing artificial small molecule:protein complexes that function as chemically induced dimerization (CID) systems. Using several starting points, we evolved CID systems controlled by a therapeutic drug methotrexate. Biophysical and structural analysis of methotrexate-controlled CID system reveals the critical role played by drug-induced conformational change in ligand-controlled protein complex assembly. We demonstrate utility of the developed CID by constructing electrochemical biosensors of methotrexate that enable quantification of methotrexate in human serum. Furthermore, using the methotrexate and functionally related biosensor of rapamycin we developed a multiplexed bioelectronic system that can perform repeated measurements of multiple analytes. The presented results open the door for construction of genetically encoded signaling systems for use in bioelectronics and diagnostics, as well as metabolic and signaling network engineering.


Assuntos
Técnicas Biossensoriais/instrumentação , Dimerização , Eletrônica , Metotrexato/química , Eletroquímica , Humanos , Ligantes , Metotrexato/sangue , Peptídeos/química , Polímeros/química , Proteínas/metabolismo
3.
ACS Sens ; 6(10): 3596-3603, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34637274

RESUMO

Enzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors. Here, we propose a new concept where protease biosensors with a tunable input uncage a signaling peptide, which can then transmit a signal to an allosteric protein reporter. We demonstrate that both the cage and the regulatory domain of the reporter can be constructed from the same peptide-binding domain, such as calmodulin. To demonstrate this concept, we constructed a proteolytic rapamycin biosensor and demonstrated its quantitative actuation on fluorescent, luminescent, and electrochemical reporters. Using the latter, we constructed sensitive bioelectrodes that detect the messenger peptide release and quantitatively convert the recognition event into electric current. We discuss the application of such systems for the construction of in vitro sensory arrays and in vivo signaling circuits.


Assuntos
Técnicas Biossensoriais , Calmodulina , Calmodulina/metabolismo , Peptídeo Hidrolases , Proteólise , Transdução de Sinais
4.
J Inorg Biochem ; 220: 111460, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866045

RESUMO

Iron is an essential nutrient for virtually all forms of life. Because of its redox properties and involvement in a wide range of biological processes, a number of qualitative and quantitative chemical tools have been developed to detect reduced (Fe2+) and oxidized (Fe3+) forms of iron in biomolecules. These types of measurements are not only important in detecting iron species in solution, but also in understanding iron distribution, accumulation, and role in physiological and pathological processes. Here, we use UV-vis spectrophotometry and three common chromogenic reagents, ferrozine, 2,2'-bipyridine, and 1,10-phenanthroline to detect and quantify the concentration of ferrous ions in aqueous solutions, owing to the unique absorption spectra, specific molar absorptivity, and characteristic colors of these Fe2+-chelator complexes. Our results show that the kinetics of the formation of the {Fe2+-(ferrozine)3} complex, but not the{Fe2+-(bipyridine)3} or the {Fe(II)-(phenanthroline)3} complexes depend on the concentration of the iron chelator, requiring up to 20 min to complete when close to stoichiometric ratios are employed. The molar absorptivity values of these complexes under excess chelator concentrations were ~ 10% to 15% higher than reported literature values (i.e. 31,500 ± 1500 M-1 cm-1 for ferrozine at 562 nm, 9950 ± 100 M-1 cm-1 for 2,2'-bipyridine at 522 nm, and 12,450 ± 370 M-1 cm-1 for 1,10-phenanthroline at 510 nm). Our results have important implications when quantifying iron in biological systems and reveal optimal experimental conditions that must be employed for the accurate measurements of ferrous ions, whether free in solution, or after reduction of protein-bound ferric ions.


Assuntos
2,2'-Dipiridil/química , Quelantes/química , Complexos de Coordenação/química , Ferrozina/química , Ferro/química , Fenantrolinas/química , Concentração de Íons de Hidrogênio , Cinética , Ligantes
5.
Biochim Biophys Acta Gen Subj ; 1864(11): 129700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798636

RESUMO

BACKGROUND: The mechanism of iron oxidation and core formation in homopolymeric H-type ferritins has been extensively studied in-vitro, so has the reductive mobilization of iron from the inorganic iron(III) core. However, neither process is well-understood in-vivo despite recent scientific advances. SCOPE OF REVIEW: Here, we provide a summary of our current understanding of iron mineralization and iron core dissolution in homopolymeric H-type ferritins and highlight areas of interest and further studies that could answer some of the outstanding questions of iron metabolism. MAJOR CONCLUSIONS: The overall iron oxidation mechanism in homopolymeric H-type ferritins from vertebrates (i.e. human H and frog M ferritins) is similar, despite nuances in the individual oxidation steps due to differences in the iron ligand environments inside the three fold channels, and at the dinuclear ferroxidase centers. Ferrous cations enter the protein shell through hydrophilic channels, followed by their rapid oxidization at di­iron centers. Hydrogen peroxide produced during iron oxidation can react with additional iron(II) at ferroxidase centers, or at separate sites, or possibly on the surface of the mineral core. In-vitro ferritin iron mobilization can be achieved using a variety of reducing agents, but in-vivo iron retrieval may occur through a variety of processes, including proteolytic degradation, auxiliary iron mobilization mechanisms involving physiological reducing agents, and/or oxidoreductases. GENERAL SIGNIFICANCE: This review provides important insights into the mechanisms of iron oxidation and mobilization in homopolymeric H-type ferritins, and different strategies in maintaining iron homeostasis.


Assuntos
Apoferritinas/metabolismo , Ferro/metabolismo , Animais , Apoferritinas/química , Transporte Biológico , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Humanos , Modelos Moleculares , Oxirredução , Proteólise
6.
Chemphyschem ; 21(7): 589-593, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31755204

RESUMO

Reactions catalyzed by artificial allosteric enzymes, chimeric proteins with fused biorecognition and catalytic units, were used to mimic multi-input Boolean logic systems. The catalytic parts of the systems were represented by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). Two biorecognition units, calmodulin or artificial peptide-clamp, were integrated into PQQ-GDH and locked it in the OFF or ON state respectively. The ligand-peptide binding cooperatively with Ca2+ cations to a calmodulin bioreceptor resulted in the enzyme activation, while another ligand-peptide bound to a clamp-receptor inhibited the enzyme. The enzyme activation and inhibition originated from peptide-induced allosteric transitions in the receptor units that propagated to the catalytic domain. While most of enzymes used to mimic Boolean logic gates operate with two inputs (substrate and co-substrate), the used chimeric enzymes were controlled by four inputs (glucose - substrate, dichlorophenolindophenol - electron acceptor/co-substrate, Ca2+ cations and a peptide - activating/inhibiting signals). The biocatalytic reactions controlled by four input signals were considered as logic networks composed of several concatenated logic gates. The developed approach allows potentially programming complex logic networks operating with various biomolecular inputs representing potential utility for different biomedical applications.


Assuntos
Calmodulina/farmacologia , Biologia Computacional , Glucose Desidrogenase/antagonistas & inibidores , Peptídeos/farmacologia , Biocatálise , Calmodulina/química , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo , Ligantes , Lógica , Modelos Moleculares , Estrutura Molecular , Peptídeos/química
7.
Adv Exp Med Biol ; 1140: 237-250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347051

RESUMO

Covalent modification of proteins is extensively used in research and industry for biosensing, medical diagnostics, targeted drug delivery, and many other practical applications. The conventional method for production of protein conjugates has changed little in the last 20 years mostly relying on reactions of side chains of cysteine and lysine residues. Due to the presence of large numbers of similar reactive amino acid residues in proteins, common synthetic methods generally produce complex mixtures of products, which are difficult to separate. An emerging alternative technology for covalent modification of proteins involves formation of a covalent bond with a hexahistidine affinity tag present in a majority of recombinant proteins without interfering with other amino acid residues. The approach is based on formation of a ternary complex of the hexahistidine sequence with a bivalent metal cation chelated by ligand bearing an electrophilic Baylis-Hillman ester group capable of subsequent formation of a covalent bond with one of the histidine residues of the tag. The reaction proceeds under mild reaction conditions in neutral aqueous solutions under high dilutions (10-5 to 10-4 M) providing a stable covalent bond between the label and an imidazole residue in a hexahistidine tag at either C- or N-terminus. Because hexahistidine affinity tag methodology is a de-facto standard for preparation of recombinant proteins our approach can be easily implemented for selective derivatization of these proteins with fluorescent groups, alkynyl groups for "click" reactions, or biotinylation.


Assuntos
Histidina/química , Oligopeptídeos/química , Engenharia de Proteínas/métodos , Indicadores e Reagentes , Proteínas Recombinantes
8.
Metallomics ; 11(4): 774-783, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30720039

RESUMO

The excessively high and inconsistent literature values for Km,Fe and Km,O2 prompted us to examine the iron oxidation kinetics in ferritin, the major iron storage protein in mammals, and to determine whether a traditional Michaelis-Menten enzymatic behavior is obeyed. The kinetics of Fe(ii) oxidation and mineralization catalyzed by three different types of ferritins (recombinant human homopolymer 24H, HuHF, human heteropolymer ∼21H:3L, HL, and horse spleen heteropolymer ∼3.3H:20.7L, HosF) were therefore studied under physiologically relevant O2 concentrations, but also in the presence of excess Fe(ii) and O2 concentrations. The observed iron oxidation kinetics exhibited two distinct phases (phase I and phase II), neither of which obeyed Michaelis-Menten kinetics. While phase I was very rapid and corresponded to the oxidation of approximately 2 Fe(ii) ions per H-subunit, phase II was much slower and varied linearly with the concentration of iron(ii) cations in solution, independent of the size of the iron core. Under low oxygen concentration close to physiological, the iron uptake kinetics revealed a Michaelis-Menten behavior with Km,O2 values in the low µM range (i.e. ∼1-2 µM range). Our experimental Km,O2 values are significantly lower than typical cellular oxygen concentration, indicating that iron oxidation and mineralization in ferritin should not be affected by the oxygenation level of cells, and should proceed even under hypoxic events. A kinetic model is proposed in which the inhibition of the protein's activity is caused by bound iron(iii) cations at the ferroxidase center, with the rate limiting step corresponding to an exchange or a displacement reaction between incoming Fe(ii) cations and bound Fe(iii) cations.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Animais , Cavalos , Humanos , Cinética , Oxirredução , Proteínas Recombinantes/metabolismo , Baço/metabolismo
9.
Pharmaceuticals (Basel) ; 11(4)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400623

RESUMO

Ferritins are highly conserved supramolecular protein nanostructures composed of two different subunit types, H (heavy) and L (light). The two subunits co-assemble into a 24-subunit heteropolymer, with tissue specific distributions, to form shell-like protein structures within which thousands of iron atoms are stored as a soluble inorganic ferric iron core. In-vitro (or in cell free systems), the mechanisms of iron(II) oxidation and formation of the mineral core have been extensively investigated, although it is still unclear how iron is loaded into the protein in-vivo. In contrast, there is a wide spread belief that the major pathway of iron mobilization from ferritin involves a lysosomal proteolytic degradation of ferritin, and the dissolution of the iron mineral core. However, it is still unclear whether other auxiliary iron mobilization mechanisms, involving physiological reducing agents and/or cellular reductases, contribute to the release of iron from ferritin. In vitro iron mobilization from ferritin can be achieved using different reducing agents, capable of easily reducing the ferritin iron core, to produce soluble ferrous ions that are subsequently chelated by strong iron(II)-chelating agents. Here, we review our current understanding of iron mobilization from ferritin by various reducing agents, and report on recent results from our laboratory, in support of a mechanism that involves a one-electron transfer through the protein shell to the iron mineral core. The physiological significance of the iron reductive mobilization from ferritin by the non-enzymatic FMN/NAD(P)H system is also discussed.

10.
Biochim Biophys Acta Gen Subj ; 1861(12): 3257-3262, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943300

RESUMO

BACKGROUND: Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. METHODS: The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. RESULTS AND CONCLUSIONS: Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. GENERAL SIGNIFICANCE: Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.


Assuntos
Ferritinas/química , Mononucleotídeo de Flavina/farmacologia , Hidroquinonas/farmacologia , Ferro/química , Animais , Transporte de Elétrons , Guanidina/farmacologia , Cavalos , Humanos , Cinética , Octoxinol/farmacologia , Oxirredução , Ureia/farmacologia
11.
Biochim Biophys Acta ; 1830(10): 4669-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23726988

RESUMO

BACKGROUND: Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood. Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo. METHODS: Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)-bipyridine complex using a Cary 50 Bio UV-Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode. RESULTS: The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed. CONCLUSIONS: Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin. GENERAL SIGNIFICANCE: There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.


Assuntos
Ferritinas/metabolismo , Mononucleotídeo de Flavina/metabolismo , Ferro/metabolismo , Animais , Cavalos , Humanos , NAD/metabolismo , Espectrofotometria Ultravioleta
12.
Biomacromolecules ; 13(8): 2465-71, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22775540

RESUMO

Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.


Assuntos
Alginatos/química , Materiais Biocompatíveis/síntese química , Cloretos/química , Complexos de Coordenação/síntese química , Compostos Férricos/química , Hidrogéis/síntese química , Fotólise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Ácidos Carboxílicos/química , Ácidos Carboxílicos/efeitos da radiação , Coloides , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Compostos Ferrosos/química , Ácido Glucurônico/química , Ouro/química , Ácidos Hexurônicos/química , Hidrogéis/química , Hidrogéis/efeitos da radiação , Nanopartículas Metálicas/química , Oxirredução , Lactato de Sódio/química , Soluções , Alicerces Teciduais , Raios Ultravioleta
13.
ACS Appl Mater Interfaces ; 4(1): 466-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22200073

RESUMO

Novel biocompatible hybrid-material composed of iron-ion-cross-linked alginate with embedded protein molecules has been designed for the signal-triggered drug release. Electrochemically controlled oxidation of Fe(2+) ions in the presence of soluble natural alginate polymer and drug-mimicking protein (bovine serum albumin, BSA) results in the formation of an alginate-based thin-film cross-linked by Fe(3+) ions at the electrode interface with the entrapped protein. The electrochemically generated composite thin-film was characterized by electrochemistry and atomic force microscopy (AFM). Preliminary experiments demonstrated that the electrochemically controlled deposition of the protein-containing thin-film can be performed at microscale using scanning electrochemical microscopy (SECM) as the deposition tool producing polymer-patterned spots potentially containing various entrapped drugs. Application of reductive potentials on the modified electrode produced Fe(2+) cations which do not keep complexation with alginate, thus resulting in the electrochemically triggered thin-film dissolution and the protein release. Different experimental parameters, such as the film-deposition time, concentrations of compounds and applied potentials, were varied in order to demonstrate that the electrodepositon and electrodissolution of the alginate composite film can be tuned to the optimum performance. A statistical modeling technique was applied to find optimal conditions for the formation of the composite thin-film for the maximal encapsulation and release of the drug-mimicking protein at the lowest possible potential.


Assuntos
Alginatos/química , Preparações de Ação Retardada/farmacocinética , Ferro/química , Soroalbumina Bovina/farmacocinética , Preparações de Ação Retardada/química , Eletroquímica , Eletrodos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Oxirredução , Soroalbumina Bovina/química
14.
Chem Commun (Camb) ; 47(2): 731-3, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21060922

RESUMO

Tridentate chelate ligands of 2,6-bis[hydroxy(methyl)amino]-1,3,5-triazine family rapidly release iron from human recombinant ferritin in the presence of oxygen. The reaction is inhibited by superoxide dismutase, catalase, mannitol and urea. Suggested reaction mechanism involves reduction of the ferritin iron core by superoxide anion, diffusion of iron(II) cations outside the ferritin shell, and regeneration of superoxide anions through oxidation of iron(II) chelate complexes with molecular oxygen.


Assuntos
Ferritinas/química , Quelantes de Ferro/química , Ferro/química , Oxigênio/química , Catalase/metabolismo , Catálise , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Cinética , Ligantes , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/química
15.
J Med Chem ; 53(11): 4488-501, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20446735

RESUMO

The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC(50) = 0.30 microM). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC(50) = 0.042 microM). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N(4)-Benzyloxy-CDP (15, MRS2964) and N(4)-methoxy-Cp(3)U (23, MRS2957) were potent, selective P2Y(6) receptor agonists (EC(50) of 0.026 and 0.012 microM, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N(4)-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC(50) of 2.47 and 0.18 microM, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.


Assuntos
Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/farmacologia , Ésteres/química , Iminas/química , Polifosfatos/química , Agonistas do Receptor Purinérgico P2 , Pirimidinas/química , Ribonucleotídeos/química , Ribonucleotídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Bioorg Med Chem Lett ; 20(2): 458-60, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20005708

RESUMO

We synthesized and evaluated new specific tridentate iron(III) chelators of 2,6-bis[hydroxyamino]-1,3,5-triazine (BHT) family for use in iron deprivation cancer therapy. Physical properties of BHT chelators are easily customizable allowing easy penetration through cellular membranes. Antiproliferative activity of new BHT chelators was studied on MDA-MB-231 and MiaPaCa cells and compared to a clinically available new oral iron chelator, deferasirox (DFX). The antiproliferative activity of new chelators was found to correlate with iron(III) chelation ability and some of analogs showed substantially higher antiproliferative activity than DFX.


Assuntos
Antineoplásicos/síntese química , Quelantes de Ferro/síntese química , Ferro/química , Triazinas/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quelantes de Ferro/química , Quelantes de Ferro/toxicidade , Triazinas/química , Triazinas/toxicidade
17.
Inorg Chem ; 48(18): 8662-4, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19705803

RESUMO

A new system for the complementary coordination of two different terdentate ligands based on a 2-(hydroxyamino)-1,3,5-triazine motif around a ferric cation is reported. Prototropic switching between hetero- and homoligand complexes proceeds with more than 95% selectivity.


Assuntos
Ferro/química , Triazinas/química , Cátions , Cristalografia por Raios X , Ligantes , Estrutura Molecular
18.
Nucl Med Biol ; 36(1): 3-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19181263

RESUMO

INTRODUCTION: Bromine-76-radiolabeled analogues of previously reported high-affinity A(3) adenosine receptor (A(3)AR) nucleoside ligands have been prepared as potential radiotracers for positron emission tomography. METHODS: The radiosyntheses were accomplished by oxidative radiobromination on the N(6)-benzyl moiety of trimethyltin precursors. Biodistribution studies of the kinetics of uptake were conducted in awake rats. RESULTS: We prepared an agonist ligand {[(76)Br](1'S,2'R,3'S,4'R,5'S)-4'-{2-chloro-6-[(3-bromophenylmethyl)amino]purin-9-yl}-1'-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2',3'-diol (MRS3581)} in 59% radiochemical yield with a specific activity of 19.5 GBq/micromol and an antagonist ligand {[(76)Br](1'R,2'R,3'S,4'R,5'S)-4'-(6-(3-bromobenzylamino)-2-chloro-9H-purin-9-yl)bicyclo[3.1.0]hexane-2',3'-diol (MRS5147)} in 65% radiochemical yield with a specific activity of 22 GBq/micromol. The resultant products exhibited the expected high affinity (K(i) approximately 0.6 nM) and specific binding at the human A(3)AR in vitro. Biodistribution studies in the rat showed uptake in the organs of excretion and metabolism. The antagonist MRS5147 exhibited increasing uptake in testes, an organ that contains significant quantities of A(3)AR, over a 2-h time course, which suggests the presence of a specific A(3)AR retention mechanism. CONCLUSION: We were able to compare uptake of the [(76)Br]-labeled antagonist MRS5147 to [(76)Br]agonist MRS3581. The antagonist MRS5147 shows increasing uptake in the testes, an A(3)AR-rich tissue, suggesting that this ligand may have promise as a molecular imaging agent.


Assuntos
Radioisótopos de Bromo/química , Nucleosídeos/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Ligantes , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Radioquímica , Ratos , Coloração e Rotulagem , Especificidade por Substrato , Distribuição Tecidual
19.
Bioorg Med Chem ; 16(18): 8546-56, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18752961

RESUMO

We have prepared 50-modified derivatives of adenosine and a corresponding (N)-methanocarba nucleoside series containing a bicyclo[3.1.0]hexane ring system in place of the ribose moiety. The compounds were examined in binding assays at three subtypes of adenosine receptors (ARs) and in functional assays at the A3 AR. The H-bonding ability of a group of 9-riboside derivatives containing a 50-uronamide moiety was reduced by modification of the NH; however these derivatives did not display the desired activity as selective A3 AR antagonists, as occurs with 50-N,N-dimethyluronamides. However, truncated (N)-methanocarba analogues lacking a 40-hydroxymethyl group were highly potent and selective antagonists of the human A3 AR. The compounds were synthesized from D-ribose using a reductive free radical decarboxylation of a 50-carboxy intermediate. A less efficient synthetic approach began with L-ribose, which was similar to the published synthesis of (N)-methanocarba A3AR agonists. Compounds 33b-39b (N6-3-halobenzyl and related arylalkyl derivatives) were potent A3AR antagonists with binding Ki values of 0.7-1.4 nM. In a functional assay of [35S]GTPcS binding, 33b (3-iodobenzyl) completely inhibited stimulation by NECA with a KB of 8.9 nM. Thus, a highly potent and selective series of A3AR antagonists has been described.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Compostos Bicíclicos com Pontes/química , Nucleosídeos/farmacologia , Ribose/química , Algoritmos , Animais , Sítios de Ligação , Células CHO/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nucleosídeos/síntese química , Ensaio Radioligante , Receptor A3 de Adenosina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 18(9): 2813-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18424135

RESUMO

2-Chloro-5'-N-methylcarboxamidoadenosine analogues containing the (N)-methanocarba (bicyclo[3.1.0]hexane) ring system as a ribose substitute display increased selectivity as agonists of the human A(3) adenosine receptor (AR). However, the selectivity in mouse was greatly reduced due to an increased tolerance of this ring system at the mouse A(1)AR. Therefore, we varied substituents at the N(6) and C2 positions in search of compounds that have improved A(3)AR selectivity and are species independent. An N(6)-methyl analogue was balanced in affinity at mouse A(1)/A(3)ARs, with high selectivity in comparison to the A(2A)AR. Substitution of the 2-chloro atom with larger and more hydrophobic substituents, such as iodo and alkynyl groups, tended to increase the A(3)AR selectivity (up to 430-fold) in mouse and preserve it in human. Extended and chemically functionalized alkynyl chains attached at the C2 position of the purine moiety preserved A(3)AR selectivity more effectively than similar chains attached at the 3-position of the N(6)-benzyl group.


Assuntos
Agonistas do Receptor A3 de Adenosina , Adenosina/farmacologia , Desenho de Fármacos , Nucleosídeos/farmacologia , Adenosina/análogos & derivados , Adenosina/síntese química , Alcanos/química , Animais , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Químicos , Nucleosídeos/síntese química , Ribose/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA