Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(51): 20866-20877, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36511893

RESUMO

A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and N,N'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca. 200 K to the ambient temperature and beyond the highest temperature accessible by NMR spectroscopy and SQUID magnetometry. The proposed "one-pot" approach is applicable to other N-donor ligands to selectively produce heteroleptic complexes─including those inaccessible by alternative synthetic pathways─with highly tunable SCO behaviors for practical applications in sensing, switching, and multifunctional devices.

2.
ACS Omega ; 6(48): 33111-33121, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34901662

RESUMO

Here, we report a combined study of the effects of two chemical modifications to an N,N'-disubstituted bis(pyrazol-3-yl)pyridine (3-bpp) and of different solvents on the spin-crossover (SCO) behavior in otherwise high-spin iron(II) complexes by solution NMR spectroscopy. The observed stabilization of the low-spin state by electron-withdrawing substituents in the two positions of the ligand that induce opposite electronic effects in SCO-active iron(II) complexes of isomeric bis(pyrazol-1-yl)pyridines (1-bpp) was previously hidden by NH functionalities in 3-bpp precluding the molecular design of SCO compounds with this family of ligands. With the recent SCO-assisting substituent design, the uncovered trends converged toward the first iron(II) complex of N,N'-disubstituted 3-bpp to undergo an almost complete SCO centered at room temperature in a less polar solvent of a high hydrogen-bond acceptor ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA