Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cancer Sci ; 115(3): 963-973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226414

RESUMO

Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.


Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proto-Oncogenes , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-ret/genética
2.
J Autism Dev Disord ; 53(8): 2975-2985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678944

RESUMO

We examined associations between prenatal oxidative stress (OS) and child autism-related outcomes. Women with an autistic child were followed through a subsequent pregnancy and that younger sibling's childhood. Associations between glutathione (GSH), glutathione disulfide (GSSG), 8-oxo-deoxyguanine (8-OHdG), and nitrotyrosine and younger sibling Social Responsiveness Scale (SRS) scores were examined using quantile regression. Increasing GSH:GSSG (suggesting decreasing OS) was associated with minor increases in SRS scores (50th percentile ß: 1.78, 95% CI: 0.67, 3.06); no other associations were observed. Results from this cohort with increased risk for autism do not support a strong relationship between OS in late pregnancy and autism-related outcomes. Results may be specific to those with enriched autism risk; future work should consider other timepoints and biomarkers.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Feminino , Gravidez , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/complicações , Dissulfeto de Glutationa , Vitaminas , Estresse Oxidativo , Biomarcadores , Glutationa/metabolismo
3.
Methods Cell Biol ; 168: 235-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35366985

RESUMO

Ionizing radiation (IR) is a significant contributor to the contemporary market of energy production and an important diagnostic and treatment modality. Besides having numerous useful applications, it is also a ubiquitous environmental stressor and a potent genotoxic and epigenotoxic agent, capable of causing substantial damage to organs and tissues of living organisms. The gastrointestinal (GI) tract is highly sensitive to IR. This problem is further compounded by the fact that there is no FDA-approved medication to mitigate acute radiation-induced GI syndrome. Therefore, establishing the animal model for studying IR-induced GI-injury is crucially important to understand the harmful consequences of intestinal radiation damage. Here, we discuss two different animal models of IR-induced acute gastrointestinal syndrome and two separate methods for measuring the magnitude of intestinal radiation damage.


Assuntos
Lesões por Radiação , Roedores , Animais , Trato Gastrointestinal , Intestinos , Permeabilidade , Lesões por Radiação/etiologia
4.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406507

RESUMO

Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat diet (HFD) context. Male and female Klf9+/+ (wild type, WT) and Klf9-/- (knockout, KO) mice were fed HFD (beginning at age 35 days) for 12 weeks, after which liver and adipose tissues were obtained, and serum adiponectin and leptin levels, liver fat content, and markers of oxidative stress evaluated. Klf9-/- mice of either sex did not exhibit significant alterations in weight gain, adipocyte size, adipokine levels, or liver fat content when compared to WT counterparts. However, Klf9-/- mice of both sexes had increased liver weight/size (hepatomegaly). This was accompanied by increased hepatic oxidative stress as indicated by decreased GSH/GSSG ratio and increased homocysteine, 3-nitrotyrosine, 3-chlorotyrosine, and 4HNE content. Decreased GSH to GSSG ratio and a trend toward increased homocysteine levels were observed in the corresponding Klf9-/- mouse serum. Gene expression analysis showed a heightened pro-inflammatory state in livers from Klf9-/- mice. KLF9 suppresses hepatic oxidative stress and inflammation, thus identifying potential mechanisms for KLF9 suppression of HCC and perhaps cancers of other tissues.

5.
Biomedicines ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052832

RESUMO

Obesity is growing worldwide epidemic. Animal models can provide some clues about the etiology, development, prevention, and treatment of obesity. We examined and compared serum metabolites between seven lean (L) and seven obese (O) female Zucker rats to investigate the individual serum metabolic profile. A combination of HPLC-UV, HPLC-ECD, and LC-MS revealed more than 400 peaks. The 50 highest quality peaks were selected as the focus of our study. Untargeted metabolomics analysis showed significantly higher mean peak heights for 20 peaks in L rats, generally distributed randomly, except for a cluster (peaks 44-50) where L showed stable dominancy over O. Only eight peaks were significantly higher in O rats. Peak height ratios between pairs of L and O rats were significantly higher at 199 positions in L rats and at 123 positions in O rats. Targeted metabolomics analysis showed significantly higher levels of methionine, cysteine, tryptophan, kynurenic acid, and cysteine/cystine ratio in L rats and significantly higher levels of cystine and tyrosine in O rats. These results contribute to a better understanding of systemic metabolic perturbations in the obese Zucker rat model, emphasizing the value of both whole metabolome and individual metabolic profiles in the design and interpretation of studies using animal models.

6.
Front Physiol ; 12: 702674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712146

RESUMO

Endometriosis is a chronic, estrogen-dependent gynecologic disorder that affects reproductive-aged women and to a lesser extent, post-menopausal women on hormone therapy. The condition is associated with systemic and local immune dysfunctions. While its underlying mechanisms remain poorly understood, endometriosis has a genetic component and propensity for the disease is subject to environmental, nutritional, and lifestyle influences. Previously, we showed that high-fat diet (HFD) increased ectopic lesion numbers, concurrent with systemic and peritoneal changes in inflammatory and oxidative stress status, in immunocompetent recipient mice ip administered with endometrial fragments null for Krüppel-like factor 9 gene. Herein, we determined whether HFD modifies lesion parameters, when recipient peritoneal environment is challenged with ectopic wild-type (WT) endometrial fragments, the latter simulating retrograde menstruation common in women during the menstrual period. WT endometrium-recipient mice fed HFD (45% kcal from fat) showed reduced lesion incidence, numbers, and volumes, in the absence of changes in systemic ovarian steroid hormone and insulin levels, relative to those fed the control diet (CD, 17% kcal from fat). Lesions from HFD- and CD-fed recipients demonstrated comparable gene expression for steroid hormone receptors (Esr and Pgr) and cytokines (Il-6, Il-8, and CxCL4) and similar levels of DNA oxidative biomarkers. HFD moderately altered serum (3-nitrotyrosine and methionine/homocysteine) and peritoneal (reduced glutathione/oxidized glutathione) pro-oxidative status but had no effect on peritoneal inflammatory (tumor necrosis factor α and tumor necrosis factor receptor 1) mediators. Results indicate that lesion genotype modifies dietary effects on disease establishment and/or progression and if translated, could be important for provision of nutritional guidelines to women with predisposition to, or affected by endometriosis.

7.
Oxid Med Cell Longev ; 2021: 2207125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457110

RESUMO

Obesity is increasing worldwide in prepubertal children, reducing the age of onset of associated comorbidities, including type 2 diabetes. Sulfur-containing amino acids, methionine, cysteine, and their derivatives play important roles in the transmethylation and transsulfuration pathways. Dysregulation of these pathways leads to alterations in the cellular methylation patterns and an imbalanced redox state. Therefore, we tested the hypothesis that one-carbon metabolism is already dysregulated in prepubertal children with obesity. Peripheral blood was collected from 64 children, and the plasma metabolites from transmethylation and transsulfuration pathways were quantified by HPLC. The cohort was stratified by BMI z-scores and HOMA-IR indices into healthy lean (HL), healthy obese (HO), and unhealthy obese (UHO). Fasting insulin levels were higher in the HO group compared to the HL, while the UHO had the highest. All groups presented normal fasting glycemia. Furthermore, high-density lipoprotein (HDL) was lower while triglycerides and lactate levels were higher in the UHO compared to HO subjects. S-adenosylhomocysteine (SAH) and total homocysteine levels were increased in the HO group compared to HL. Additionally, glutathione metabolism was also altered. Free cystine and oxidized glutathione (GSSG) were increased in the HO as compared to HL subjects. Importantly, the adipocyte secretory function was already compromised at this young age. Elevated circulating leptin and decreased adiponectin levels were observed in the UHO as compared to the HO subjects. Some of these alterations were concomitant with alterations in the DNA methylation patterns in the obese group, independent of the impaired insulin levels. In conclusion, our study informs on novel and important metabolic alterations in the transmethylation and the transsulfuration pathways in the early stages of obesity. Moreover, the altered secretory function of the adipocyte very early in life may be relevant in identifying early metabolic markers of disease that may inform on the increased risk for specific future comorbidities in this population.


Assuntos
Biomarcadores/análise , Metilação de DNA , Estresse Oxidativo , Obesidade Infantil/epidemiologia , Adiponectina/genética , Adiponectina/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Leptina/genética , Leptina/metabolismo , Masculino , Oxirredução , Obesidade Infantil/genética , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Estados Unidos/epidemiologia
8.
Int J Radiat Oncol Biol Phys ; 109(2): 581-593, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002540

RESUMO

BACKGROUND AND PURPOSE: Identification of appropriate dietary strategies for prevention of weight and muscle loss in cancer patients is crucial for successful treatment and prolonged patient survival. High-protein oral nutritional supplements decrease mortality and improve indices of nutritional status in cancer patients; however, high-protein diets are often rich in methionine, and experimental evidence indicates that a methionine-supplemented diet (MSD) exacerbates gastrointestinal toxicity after total body irradiation. Here, we sought to investigate whether MSD can exacerbate gastrointestinal toxicity after local abdominal irradiation, an exposure regimen more relevant to clinical settings. MATERIALS AND METHODS: Male CBA/CaJ mice fed either a methionine-adequate diet or MSD (6.5 mg methionine/kg diet vs 19.5 mg/kg) received localized abdominal X-irradiation (220 kV, 13 mA) using the Small Animal Radiation Research Platform, and tissues were harvested 4, 7, and 10 days after irradiation. RESULTS: MSD exacerbated gastrointestinal toxicity after local abdominal irradiation with 12.5 Gy. This was evident as impaired nutrient absorption was paralleled by reduced body weight recovery. Mechanistically, significant shifts in the gut ecology, evident as decreased microbiome diversity, and substantially increased bacterial species that belong to the genus Bacteroides triggered proinflammatory responses. The latter were evident as increases in circulating neutrophils with corresponding decreases in lymphocytes and associated molecular alterations, exhibited as increases in mRNA levels of proinflammatory genes Icam1, Casp1, Cd14, and Myd88. Altered expression of the tight junction-related proteins Cldn2, Cldn5, and Cldn6 indicated a possible increase in intestinal permeability and bacterial translocation to the liver. CONCLUSIONS: We report that dietary supplementation with methionine exacerbates gastrointestinal syndrome in locally irradiated mice. This study demonstrates the important roles registered dieticians should play in clinical oncology and further underlines the necessity of preclinical and clinical investigations in the role of diet in the success of cancer therapy.


Assuntos
Abdome/efeitos da radiação , Suplementos Nutricionais/efeitos adversos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos da radiação , Metionina/efeitos adversos , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Masculino , Camundongos , RNA Mensageiro/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação
9.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G439-G450, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961718

RESUMO

Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.


Assuntos
Síndrome Aguda da Radiação/etiologia , Suplementos Nutricionais/toxicidade , Intestino Delgado/efeitos dos fármacos , Metionina/toxicidade , Lesões Experimentais por Radiação/etiologia , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/patologia , Animais , Metilação de DNA/efeitos dos fármacos , Disbiose , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Doses de Radiação , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/microbiologia , Lesões Experimentais por Radiação/patologia , Fatores de Risco , Irradiação Corporal Total
11.
Sci Rep ; 9(1): 13953, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562350

RESUMO

Ionizing radiation (IR)-induced intestinal damage is characterized by a loss of intestinal crypt cells, intestinal barrier disruption and translocation of intestinal microflora resulting in sepsis-mediated lethality. We have shown that mice lacking C/EBPδ display IR-induced intestinal and hematopoietic injury and lethality. The purpose of this study was to investigate whether increased IR-induced inflammatory, oxidative and nitrosative stress promote intestinal injury and sepsis-mediated lethality in Cebpd-/- mice. We found that irradiated Cebpd-/- mice show decreased villous height, crypt depth, crypt to villi ratio and expression of the proliferation marker, proliferating cell nuclear antigen, indicative of intestinal injury. Cebpd-/- mice show increased expression of the pro-inflammatory cytokines (Il-6, Tnf-α) and chemokines (Cxcl1, Mcp-1, Mif-1α) and Nos2 in the intestinal tissues compared to Cebpd+/+ mice after exposure to TBI. Cebpd-/- mice show decreased GSH/GSSG ratio, increased S-nitrosoglutathione and 3-nitrotyrosine in the intestine indicative of basal oxidative and nitrosative stress, which was exacerbated by IR. Irradiated Cebpd-deficient mice showed upregulation of Claudin-2 that correlated with increased intestinal permeability, presence of plasma endotoxin and bacterial translocation to the liver. Overall these results uncover a novel role for C/EBPδ in protection against IR-induced intestinal injury by suppressing inflammation and nitrosative stress and underlying sepsis-induced lethality.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Inflamação/metabolismo , Intestinos/efeitos da radiação , Estresse Nitrosativo/fisiologia , Lesões Experimentais por Radiação/metabolismo , Sepse/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamação/genética , Enteropatias/genética , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Camundongos , Camundongos Knockout , Lesões Experimentais por Radiação/genética , Radiação Ionizante , Sepse/genética
12.
Toxicol Sci ; 170(2): 273-282, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086990

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming a major etiological risk factor for hepatocellular carcinoma (HCC) in the United States and other Western countries. In this study, we investigated the role of gene-specific promoter cytosine DNA methylation and gene expression alterations in the development of NAFLD-associated HCC in mice using (1) a diet-induced animal model of NAFLD, (2) a Stelic Animal Model of nonalcoholic steatohepatitis-derived HCC, and (3) a choline- and folate-deficient (CFD) diet (CFD model). We found that the development of NAFLD and its progression to HCC was characterized by down-regulation of glycine N-methyltransferase (Gnmt) and this was mediated by progressive Gnmt promoter cytosine DNA hypermethylation. Using a panel of genetically diverse inbred mice, we observed that Gnmt down-regulation was an early event in the pathogenesis of NAFLD and correlated with the extent of the NAFLD-like liver injury. Reduced GNMT expression was also found in human HCC tissue and liver cancer cell lines. In in vitro experiments, we demonstrated that one of the consequences of GNMT inhibition was an increase in genome methylation facilitated by an elevated level of S-adenosyl-L-methionine. Overall, our findings suggest that reduced Gnmt expression caused by promoter hypermethylation is one of the key molecular events in the development of NAFLD-derived HCC and that assessing Gnmt methylation level may be useful for disease stratification.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinogênese , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas
13.
Carcinogenesis ; 39(9): 1117-1126, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29939201

RESUMO

Methionine dependency describes the characteristic rapid in vitro death of most tumor cells in the absence of methionine. Combining chemotherapy with dietary methionine deprivation [methionine-deficient diet (MDD)] at tolerable levels has vast potential in tumor treatment; however, it is limited by MDD-induced toxicity during extended deprivation. Recent advances in imaging and irradiation delivery have created the field of stereotactic body radiotherapy (SBRT), where fewer large-dose fractions delivered in less time result in increased local-tumor control, which could be maximally synergistic with an MDD short course. Identification of the lowest effective methionine dietary intake not associated with toxicity will further enhance the cancer therapy potential. In this study, we investigated the effects of MDD and methionine-restricted diet (MRD) in primary and metastatic melanoma models in combination with radiotherapy (RT). In vitro, MDD dose-dependently sensitized mouse and human melanoma cell lines to RT. In vivo in mice, MDD substantially potentiated the effects of RT by a significant delay in tumor growth, in comparison with administering MDD or RT alone. The antitumor effects of an MDD/RT approach were due to effects on one-carbon metabolism, resulting in impaired methionine biotransformation via downregulation of Mat2a, which encodes methionine adenosyltransferase 2A. Furthermore, and probably most importantly, MDD and MRD substantially diminished metastatic potential; the antitumor MRD effects were not associated with toxicity to normal tissue. Our findings suggest that modulation of methionine intake holds substantial promise for use with short-course SBRT for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Melanoma/dietoterapia , Melanoma/patologia , Metionina Adenosiltransferase/biossíntese , Metionina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia
14.
Antioxidants (Basel) ; 7(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642403

RESUMO

Gamma-tocotrienol (GT3) confers protection against ionizing radiation (IR)-induced injury. However, the molecular targets that underlie the protective functions of GT3 are not yet known. We have reported that mice lacking CCAAT enhancer binding protein delta (Cebpd-/-) display increased mortality to IR due to injury to the hematopoietic and intestinal tissues and that Cebpd protects from IR-induced oxidative stress and cell death. The purpose of this study was to investigate whether Cebpd mediates the radio protective functions of GT3. We found that GT3-treated Cebpd-/- mice showed partial recovery of white blood cells compared to GT3-treated Cebpd⁺/+ mice at 2 weeks post-IR. GT3-treated Cebpd-/- mice showed an increased loss of intestinal crypt colonies, which correlated with increased expression of inflammatory cytokines and chemokines, increased levels of oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO) and 3-nitrotyrosine (3-NT) after exposure to IR compared to GT3-treated Cebpd+/+ mice. Cebpd is induced by IR as well as a combination of IR and GT3 in the intestine. Studies have shown that granulocyte-colony stimulating factor (G-CSF), mediates the radioprotective functions of GT3. Interestingly, we found that IR alone as well as the combination of IR and GT3 caused robust augmentation of plasma G-CSF in both Cebpd⁺/+ and Cebpd-/- mice. These results identify a novel role for Cebpd in GT3-mediated protection against IR-induced injury, in part via modulation of IR-induced inflammation and oxidative/nitrosative stress, which is independent of G-CSF.

15.
Front Neurosci ; 12: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483858

RESUMO

Autism spectrum disorder (ASD) affects about 1 in 45 individuals in the United States, yet effective treatments are yet to be defined. There is growing evidence that ASD is associated with abnormalities in several metabolic pathways, including the inter-connected folate, methylation and glutathione pathways. Several treatments that can therapeutically target these pathways have been tested in preliminary clinical trials. The combination of methylcobalamin (mB12) with low-dose folinic acid (LDFA) and sapropterin, a synthetic form of tetrahydrobiopterin (BH4) have been studied in open-label trials while high-dose folinic acid has been studied in a double-blind placebo controlled trial. All of these treatments have the potential to positively affect folate, methylation and glutathione pathways. Although the effect of mB12/LDFA and BH4 on methylation and glutathione metabolism have been examined in the open-label studies, these changes have not been compared to controls who received a placebo in order to account for the natural variation in the changes in these pathways. Furthermore, the recent study using high-dose folinic acid (HDFA) did not analyze the change in metabolism resulting from the treatment. Thus, we compared changes in methylation and glutathione metabolism and biomarkers of chronic oxidative stress as a result of these three treatments to individuals receiving placebo. In general, mB12/LDFA treatment had a significant effect on glutathione and cysteine metabolism with a medium effect size while BH4 had a significant effect on methylation and markers of chronic oxidative stress with a large effect size. HDFA treatment did not significantly influence biomarkers of methylation, glutathione or chronic oxidative stress. One caveat was that participants in the mB12/LDFA and BH4 studies had significantly worse markers of glutathione metabolism and chronic oxidative stress at baseline, respectively. Thus, the participants selected in these two clinical trials may have been those with the most severe metabolic abnormalities and most expected to respond to these treatments. Overall this study supports the notion that metabolic abnormalities in individuals with ASD may be amenable to targeted treatments and provide some insight into the mechanism of action of these treatments.

16.
Mol Neurobiol ; 55(2): 1740-1749, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28220356

RESUMO

Long interspersed nuclear elements-1 (LINE-1 or L1) are mobile DNA sequences that are capable of duplication and insertion (retrotransposition) within the genome. Recently, retrotransposition of L1 was shown to occur within human brain leading to somatic mosaicism in hippocampus and cerebellum. Because unregulated L1 activity can promote genomic instability and mutagenesis, multiple mechanisms including epigenetic chromatin condensation have evolved to effectively repress L1 expression. Nonetheless, L1 expression has been shown to be increased in patients with Rett syndrome and schizophrenia. Based on this evidence and our reports of oxidative stress and epigenetic dysregulation in autism cerebellum, we sought to determine whether L1 expression was increased in autism brain. The results indicated that L1 expression was significantly elevated in the autism cerebellum but not in BA9, BA22, or BA24. The binding of repressive MeCP2 and histone H3K9me3 to L1 sequences was significantly lower in autism cerebellum suggesting that relaxation of epigenetic repression may have contributed to increased expression. Further, the increase in L1 expression was inversely correlated with glutathione redox status consistent with reports indicating that L1 expression is increased under pro-oxidant conditions. Finally, the expression of transcription factor FOXO3, sensor of oxidative stress, was significantly increased and positively associated with L1 expression and negatively associated with glutathione redox status. While these novel results are an important first step, future understanding of the contribution of elevated L1 expression to neuronal CNVs and genomic instability in autism will depend on emerging cell-specific genomic technologies, a challenge that warrants future investigation.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Neurônios/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/patologia , Proteína Forkhead Box O3/metabolismo , Glutationa/metabolismo , Humanos , Neurônios/patologia , Estresse Oxidativo/fisiologia , Regiões Promotoras Genéticas
17.
FASEB J ; 32(3): 1591-1601, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127188

RESUMO

The substantial rise in the prevalence of nonalcoholic steatohepatitis (NASH), an advanced form of nonalcoholic fatty liver disease, and the strong association between NASH and the development of hepatocellular carcinoma indicate the urgent need for a better understanding of the underlying mechanisms. In the present study, by using the Stelic animal model of NASH and NASH-derived liver carcinogenesis, we investigated the role of the folate-dependent 1-carbon metabolism in the pathogenesis of NASH. We demonstrated that advanced NASH and NASH-related liver carcinogenesis are characterized by a significant dysregulation of 1-carbon homeostasis, with diminished expression of key 1-carbon metabolism genes, especially a marked inhibition of the S-adenosylhomocysteine hydrolase ( Ahcy) gene and an increased level of S-adenosyl-l-homocysteine (SAH). The reduction in Ahcy expression was associated with gene-specific cytosine DNA hypermethylation and enrichment of the gene promoter by trimethylated histone H3 lysine 27 and deacetylated histone H4 lysine 16, 2 main transcription-inhibiting markers. These results indicate that epigenetically mediated inhibition of Ahcy expression may be a driving force in causing SAH elevation and subsequent downstream disturbances in transsulfuration and transmethylation pathways during the development and progression of NASH.-Pogribny, I. P., Dreval, K., Kindrat, I., Melnyk, S., Jimenez, L., de Conti, A., Tryndyak, V., Pogribna, M., Ortega, J. F., James, S. J., Rusyn, I., Beland, F. A. Epigenetically mediated inhibition of S-adenosylhomocysteine hydrolase and the associated dysregulation of 1-carbon metabolism in nonalcoholic steatohepatitis and hepatocellular carcinoma.


Assuntos
Adenosil-Homocisteinase/biossíntese , Carcinoma Hepatocelular/enzimologia , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/enzimologia , Proteínas de Neoplasias/biossíntese , Hepatopatia Gordurosa não Alcoólica/enzimologia , Adenosil-Homocisteinase/genética , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Hepatopatia Gordurosa não Alcoólica/patologia , S-Adenosil-Homocisteína/metabolismo
18.
Aging (Albany NY) ; 9(7): 1660-1676, 2017 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-28758896

RESUMO

Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Neoplasias Experimentais/patologia , Córtex Pré-Frontal , Animais , Neoplasias da Mama , Metilação de DNA , Metilases de Modificação do DNA , Feminino , Humanos , Camundongos , Estresse Oxidativo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
19.
Biomol Concepts ; 8(2): 83-92, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574375

RESUMO

Ionizing radiation (IR) is a ubiquitous component of our environment and an important tool in research and medical treatment. At the same time, IR is a potent genotoxic and epigenotoxic stressor, exposure to which may lead to negative health outcomes. While the genotoxocity is well described and characterized, the epigenetic effects of exposure to IR and their mechanisms remain under-investigated. In this conceptual review, we propose the IR-induced changes to one-carbon metabolism as prerequisites to alterations in the cellular epigenome. We also provide evidence from both experimental and clinical studies describing the interactions between IR and one-carbon metabolism. We further discuss the potential for the manipulation of the one-carbon metabolism in clinical applications for the purpose of normal tissue protection and for increasing the radiosensitivity of cancerous cells.


Assuntos
Carbono/metabolismo , Radiação Ionizante , Metilação de DNA/efeitos da radiação , Epigênese Genética , Histonas/metabolismo , Humanos , Metionina/metabolismo , Metilação , Modelos Genéticos
20.
Metabolites ; 7(2)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594380

RESUMO

The prevalence of the overweight and obesity is on the rise worldwide. Obesity can increase the risk of certain cancers and liver steatosis development. Previously, we reported that obesity increased liver steatosis in a mammary tumor model, but little is known about the effects of obesity in the liver in regard to global DNA methylation, DNA damage, and oxidative/nitrosative stress. Using a mammary tumor model, we investigated the effects of obesity on oxidative stress and DNA reaction. Five-week-old lean and obese female rats were used. At 50 days of age, all rats received 7,12-dimethylbenz(α)anthracene (DMBA) and were sacrificed 155 days later. HPLC with electrochemical and ultraviolet detection and LC-MS were used. Obesity caused higher (p < 0.0004) methionine levels, had no effect (p < 0.055) on SAM levels, caused lower (p < 0.0005) SAH levels, caused higher (p < 0.0005) SAM/SAH ratios, and increased (p < 0.02) global DNA methylation. Levels of free reduced GSH were not significantly lower (p < 0.08), but free oxidized GSSG was higher (p < 0.002) in obese rats. The GSH/GSSG ratio was lower (p < 0.0001), and oxidized guanosine was higher (p < 0.002) in DNA of obese rats compared to lean rats. Obesity caused significant oxidative/nitrosative stress, oxidative DNA damage, and change of DNA methylation pattern in the liver, and these changes may contribute to the development of liver steatosis in breast cancer models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA