Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917195

RESUMO

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Assuntos
Armadilhas Extracelulares , Sepse , Camundongos , Animais , Fibrinolisina , Plasminogênio , Armadilhas Extracelulares/metabolismo , Interleucina-6/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Fibrina/metabolismo
2.
Pharmacol Res ; 163: 105292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171305

RESUMO

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Assuntos
Angiotensina I/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Angiotensina I/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Cães , Humanos , Vírus da Influenza A , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Peroxidase/imunologia , Fagocitose/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Streptococcus pneumoniae
3.
Mol Immunol ; 112: 151-162, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108423

RESUMO

Pb27 antigen is an interesting alternative to immunological diagnosis of Paracoccidioidomycosis (PCM) and has demonstrated to be protective in experimental PCM. Its tertiary structure and possible function remained unknown till now. To study Pb27 at the atomic level, the recombinant protein was expressed in Escherichia coli BL21(DE3), purified, and its three-dimensional structure was solved by X-ray crystallography. Based on this structure, we performed a residue correlation analysis and in silico ligand search assays to address a possible biological function to Pb27. We identified Pb27 as a member of the extensive nucleotidyltransferase superfamily. The protein has an αßαßαß topology with two domains (N- and C-terminal domains) and adopts a monomeric form as its biological unit in solution. Structural comparisons with similar members of the superfamily clearly indicate Pb27 C-terminal domain is singular and may play an important role in its biological function. Bioinformatics analysis suggested that Pb27 might bind to ATP and CTP. This suggestion is corroborated by the fact that a magnesium cation is coordinated by two aspartic acid residues present at the active site (between N- and C-terminal domains), as evidenced by X-ray diffraction data. Besides, NMR assays (1H-15N HSQC spectra) confirmed the binding of CTP to Pb27, demonstrating for the first time an interaction between a nucleotide and this protein. Moreover, we evaluated the reactivity of sera from patients with Paracoccidioides brasiliensis infection against the recombinant form of Pb27 and showed that it was recognized by sera from infected and treated patients. Predicted B and T cell epitopes were synthesized and further evaluated against sera of PCM patients, providing information of the most reactive peptides in Pb27 primary structure which interact with specific Pb27 antibodies.


Assuntos
Proteínas Fúngicas/imunologia , Nucleotidiltransferases/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Trifosfato de Adenosina/imunologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Citidina Trifosfato/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Escherichia coli/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA