Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29936, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707401

RESUMO

Intact (whole) cell MALDI TOF mass spectrometry is a commonly used tool in clinical microbiology for several decades. Recently it was introduced to analysis of eukaryotic cells, including cancer and stem cells. Besides targeted metabolomic and proteomic applications, the intact cell MALDI TOF mass spectrometry provides a sufficient sensitivity and specificity to discriminate cell types, isogenous cell lines or even the metabolic states. This makes the intact cell MALDI TOF mass spectrometry a promising tool for quality control in advanced cell cultures with a potential to reveal batch-to-batch variation, aberrant clones, or unwanted shifts in cell phenotype. However, cellular alterations induced by change in expression of a single gene has not been addressed by intact cell mass spectrometry yet. In this work we used a well-characterized human ovarian cancer cell line SKOV3 with silenced expression of a tumor suppressor candidate 3 gene (TUSC3). TUSC3 is involved in co-translational N-glycosylation of proteins with well-known global impact on cell phenotype. Altogether, this experimental design represents a highly suitable model for optimization of intact cell mass spectrometry and analysis of spectral data. Here we investigated five machine learning algorithms (k-nearest neighbors, decision tree, random forest, partial least squares discrimination, and artificial neural network) and optimized their performance either in pure populations or in two-component mixtures composed of cells with normal or silenced expression of TUSC3. All five algorithms reached accuracy over 90 % and were able to reveal even subtle changes in mass spectra corresponding to alterations of TUSC3 expression. In summary, we demonstrate that spectral fingerprints generated by intact cell MALDI-TOF mass spectrometry coupled to a machine learning classifier can reveal minute changes induced by alteration of a single gene, and therefore contribute to the portfolio of quality control applications in routine cell and tissue cultures.

2.
J Inorg Biochem ; 246: 112301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392615

RESUMO

A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.


Assuntos
Inibidores de Lipoxigenase , Neoplasias , Inibidores de Lipoxigenase/farmacologia , Ácido Ursodesoxicólico/farmacologia , Fenantrolinas/química , Cobre/farmacologia , Cobre/química , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Apoptose , Neoplasias Pancreáticas
4.
Ann Surg Oncol ; 30(9): 5733-5742, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270440

RESUMO

BACKGROUND: This study evaluated the efficacy of pressurized intraperitoneal aerosol chemotherapy (PIPAC) with systemic chemotherapy as a bidirectional approach for gastric cancer (GC) patients with synchronous peritoneal metastases (SPM). METHODS: A retrospective analysis of a prospective PIPAC database was queried for patients who underwent a bidirectional approach between October 2019 and April 2022 at two high-volume GC surgery units in Italy (Verona and Siena). Surgical and oncological outcomes were analyzed. RESULTS: Between October 2019 and April 2022, 74 PIPAC procedures in 42 consecutive patients with Eastern Cooperative Oncology Group performance status ≤2 were performed-32 patients treated in Verona and 10 in Siena. Twenty-seven patients (64%) were female and median age at first PIPAC was 60.5 years (I-III quartiles: 49-68 years). Median Peritoneal Cancer Index (PCI) was 16 (I-III quartiles: 8-26) and 25 patients (59%) had at least two PIPAC procedures. Major complications according to the Common Terminology Criteria for Adverse Events (CTCAE; 3 and 4) occurred in three (4%) procedures, and, according to the Clavien-Dindo classification (>3a), one (1%) severe complication occurred. There were no reoperations or deaths within 30 days. Median overall survival (mOS) from diagnosis was 19.6 months (range 14-24), and mOS from first PIPAC was 10.5 months (range 7-13). Excluding cases with very heavy metastatic peritoneal burden, with PCI from 2 to 26, treated with more than one PIPAC, mOS from diagnosis was 22 months (range 14-39). Eleven patients (26%) underwent curative-intent surgery after a bidirectional approach. R0 was achieved in nine (82%) patients and complete pathological response was obtained in three (27%) cases. CONCLUSIONS: Patient selection is associated with bidirectional approach efficacy and feasibility for SPM GC treatment, which may allow potentially curative surgical radicalization in highly selected cases.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Cisplatino/uso terapêutico , Neoplasias Peritoneais/secundário , Doxorrubicina , Estudos Retrospectivos , Estudos Prospectivos , Aerossóis
5.
J Med Genet ; 49(9): 569-77, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22972948

RESUMO

BACKGROUND: Isolated complex II deficiency is a rare form of mitochondrial disease, accounting for approximately 2% of all respiratory chain deficiency diagnoses. The succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD) are autosomally-encoded and transcribe the conjugated heterotetramers of complex II via the action of two known assembly factors (SDHAF1 and SDHAF2). Only a handful of reports describe inherited SDH gene defects as a cause of paediatric mitochondrial disease, involving either SDHA (Leigh syndrome, cardiomyopathy) or SDHAF1 (infantile leukoencephalopathy). However, all four SDH genes, together with SDHAF2, have known tumour suppressor functions, with numerous germline and somatic mutations reported in association with hereditary cancer syndromes, including paraganglioma and pheochromocytoma. METHODS AND RESULTS: Here, we report the clinical and molecular investigations of two patients with histochemical and biochemical evidence of a severe, isolated complex II deficiency due to novel SDH gene mutations; the first patient presented with cardiomyopathy and leukodystrophy due to compound heterozygous p.Thr508Ile and p.Ser509Leu SDHA mutations, while the second patient presented with hypotonia and leukodystrophy with elevated brain succinate demonstrated by MR spectroscopy due to a novel, homozygous p.Asp48Val SDHB mutation. Western blotting and BN-PAGE studies confirmed decreased steady-state levels of the relevant SDH subunits and impairment of complex II assembly. Evidence from yeast complementation studies provided additional support for pathogenicity of the SDHB mutation. CONCLUSIONS: Our report represents the first example of SDHB mutation as a cause of inherited mitochondrial respiratory chain disease and extends the SDHA mutation spectrum in patients with isolated complex II deficiency.


Assuntos
Complexo II de Transporte de Elétrons/deficiência , Genes Recessivos/genética , Mutação em Linhagem Germinativa/genética , Leucoencefalopatias/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Succinato Desidrogenase/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Encéfalo/patologia , Pré-Escolar , Transporte de Elétrons , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Feminino , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética , Masculino , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/enzimologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/enzimologia , Dados de Sequência Molecular , Músculo Esquelético/patologia , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química
6.
Mol Genet Metab ; 100(4): 345-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20472482

RESUMO

Mutations of the BCS1L gene are a recognised cause of isolated respiratory chain complex III deficiency and underlie several fatal, neonatal mitochondrial diseases. Here we describe a 20-year-old Kenyan woman who initially presented as a floppy infant but whose condition progressed during childhood and adolescence with increasing muscle weakness, focal motor seizures and optic atrophy. Muscle biopsy demonstrated complex III deficiency and the pathogenicity of a novel, homozygous BCS1L mutation was confirmed by yeast complementation studies. Our data indicate that BCS1L mutations can cause a variable, neurological course which is not always fatal in childhood.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/deficiência , Complexo III da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação/genética , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Sequência de Bases , Criança , Análise Mutacional de DNA , Complexo III da Cadeia de Transporte de Elétrons/química , Feminino , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Gravidez , Saccharomyces cerevisiae , Frações Subcelulares/enzimologia , Análise de Sobrevida , Fatores de Tempo , Adulto Jovem
7.
J Hepatol ; 52(5): 644-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20338659

RESUMO

BACKGROUNDS & AIMS: The hepatitis C virus NS3 protein is taken up by myeloid cells in a TLR2-independent manner and activates myeloid cells via TLR2. This study aimed to identify the endocytic receptor(s) involved in the uptake of NS3 by myeloid cells and its relation with TLR2. METHODS: Inhibitors and transfected cells were used to identify the nature of the NS3-binding receptors expressed by myeloid cells. The cooperation between scavenger receptors (SRs) and TLR2 in the NS3-mediated activation of myeloid cells was evaluated using inhibitors, cells from TLR2(-/-) mice, and confocal microscopy. The involvement of SRs in NS3 cross-presentation was evaluated in vitro using an NS3-specific human T-cell clone. RESULTS: We observed that SRs are the main binding structures for NS3 on myeloid cells and identified the SRs SRA-1 and SREC-I as endocytic receptors for NS3. Moreover, both SRs and TLR2 cooperate in NS3-induced myeloid cell activation. CONCLUSION: This study highlights a central role for SRs in NS3 uptake and cross-presentation, and demonstrates a tightly orchestrated cooperation between signalling and endocytic innate receptors in NS3 recognition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Dendríticas/imunologia , Hepacivirus/imunologia , Receptores Depuradores/imunologia , Receptores Depuradores Classe F/fisiologia , Receptor 2 Toll-Like/fisiologia , Proteínas não Estruturais Virais/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células CHO , Diferenciação Celular , Cricetinae , Cricetulus , Células Dendríticas/citologia , Células Dendríticas/virologia , Endocitose , Humanos , Receptores de Lipopolissacarídeos/imunologia , Camundongos , Monócitos/citologia , Monócitos/fisiologia , Células Mieloides/fisiologia , Receptores Depuradores/metabolismo , Proteínas Recombinantes/imunologia , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
Blood ; 115(2): 265-73, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19965651

RESUMO

Activation of the T cell-mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte-mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


Assuntos
Imunidade Adaptativa/fisiologia , Regulação da Expressão Gênica/fisiologia , Interleucina-2/biossíntese , Ativação Linfocitária/fisiologia , MicroRNAs/metabolismo , Linfócitos T/metabolismo , Morte Celular/fisiologia , Proteína de Domínio de Morte Associada a Fas/imunologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Interleucina-2/imunologia , Células Jurkat , MicroRNAs/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/fisiologia
9.
Stem Cells ; 26(5): 1275-87, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18292209

RESUMO

Human mesenchymal stem cells (MSC) are immunosuppressive and poorly immunogenic but may act as antigen-presenting cells (APC) for CD4(+) T-cell responses; here we have investigated their ability to serve as APC for in vitro CD8(+) T-cell responses. MSC pulsed with peptides from viral antigens evoked interferon (IFN)-gamma and Granzyme B secretion in specific cytotoxic T lymphocytes (CTL) and were lysed, although with low efficiency. MSC transfected with tumor mRNA or infected with a viral vector carrying the Hepatitis C virus NS3Ag gene induced cytokine release but were not killed by specific CTL, even following pretreatment with IFN-gamma. To investigate the mechanisms involved in MSC resistance to CTL-mediated lysis, we analyzed expression of human leukocyte antigen (HLA) class I-related antigen-processing machinery (APM) components and of immunosuppressive HLA-G molecules in MSC. The LMP7, LMP10, and ERp57 components were not expressed and the MB-1 and zeta molecules were downregulated in MSC either unmanipulated or pretreated with IFN-gamma. Surface HLA-G was constitutively expressed on MSC but was not involved in their protection from CTL-mediated lysis. MSC supernatants containing soluble HLA-G (sHLA-G) inhibited CTL-mediated lysis, whereas those lacking sHLA-G did not. The role of sHLA-G in such inhibition was unambiguously demonstrated by partial restoration of lysis following sHLA-G depletion from MSC supernatants. In conclusion, human MSC can process and present HLA class I-restricted viral or tumor antigens to specific CTL with a limited efficiency, likely because of some defects in APM components. However, they are protected from CTL-mediated lysis through a mechanism that is partly sHLA-G-dependent.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células-Tronco Mesenquimais/imunologia , Linfócitos T/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular , Citotoxicidade Imunológica/efeitos dos fármacos , Granzimas/antagonistas & inibidores , Antígenos HLA/imunologia , Antígenos HLA-G , Hepacivirus/efeitos dos fármacos , Hepacivirus/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunofenotipagem , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Peptídeos/imunologia , Serpinas/metabolismo , Solubilidade/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T Citotóxicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA