Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3361, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099699

RESUMO

In routine diagnostic pathology, cancer biopsies are preserved by formalin-fixed, paraffin-embedding (FFPE) procedures for examination of (intra-) cellular morphology. Such procedures inadvertently induce DNA fragmentation, which compromises sequencing-based analyses of chromosomal rearrangements. Yet, rearrangements drive many types of hematolymphoid malignancies and solid tumors, and their manifestation is instructive for diagnosis, prognosis, and treatment. Here, we present FFPE-targeted locus capture (FFPE-TLC) for targeted sequencing of proximity-ligation products formed in FFPE tissue blocks, and PLIER, a computational framework that allows automated identification and characterization of rearrangements involving selected, clinically relevant, loci. FFPE-TLC, blindly applied to 149 lymphoma and control FFPE samples, identifies the known and previously uncharacterized rearrangement partners. It outperforms fluorescence in situ hybridization (FISH) in sensitivity and specificity, and shows clear advantages over standard capture-NGS methods, finding rearrangements involving repetitive sequences which they typically miss. FFPE-TLC is therefore a powerful clinical diagnostics tool for accurate targeted rearrangement detection in FFPE specimens.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linfoma de Células B/genética , Linfoma não Hodgkin/genética , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Translocação Genética , Biologia Computacional/métodos , Rearranjo Gênico , Genes bcl-2/genética , Genes myc/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Linfoma de Células B/diagnóstico , Linfoma não Hodgkin/diagnóstico , Proteínas Proto-Oncogênicas c-bcl-6/genética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
2.
Proteins ; 88(8): 1029-1036, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31886559

RESUMO

Our information-driven docking approach HADDOCK has demonstrated a sustained performance since the start of its participation to CAPRI. This is due, in part, to its ability to integrate data into the modeling process, and to the robustness of its scoring function. We participated in CAPRI both as server and manual predictors. In CAPRI rounds 38-45, we have used various strategies depending on the available information. These ranged from imposing restraints to a few residues identified from literature as being important for the interaction, to binding pockets identified from homologous complexes or template-based refinement/CA-CA restraint-guided docking from identified templates. When relevant, symmetry restraints were used to limit the conformational sampling. We also tested for a large decamer target a new implementation of the MARTINI coarse-grained force field in HADDOCK. Overall, we obtained acceptable or better predictions for 13 and 11 server and manual submissions, respectively, out of the 22 interfaces. Our server performance (acceptable or higher-quality models when considering the top 10) was better (59%) than the manual (50%) one, in which we typically experiment with various combinations of protocols and data sources. Again, our simple scoring function based on a linear combination of intermolecular van der Waals and electrostatic energies and an empirical desolvation term demonstrated a good performance in the scoring experiment with a 63% success rate across all 22 interfaces. An analysis of model quality indicates that, while we are consistently performing well in generating acceptable models, there is room for improvement for generating/identifying higher quality models.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
3.
Biochem Mol Biol Educ ; 44(2): 160-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751257

RESUMO

Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These improvements are also benefitting scientific education. Molecular simulations, their underlying theory, and their applications are particularly difficult to grasp for undergraduate students. Having hands-on experience with the methods contributes to a better understanding and solidification of the concepts taught during the lectures. To this end, we have created a computer practical class, which has been running for the past five years, composed of several sessions where students characterize the conformational landscape of small peptides using molecular dynamics simulations in order to gain insights on their binding to protein receptors. In this report, we detail the ingredients and recipe necessary to establish and carry out this practical, as well as some of the questions posed to the students and their expected results. Further, we cite some examples of the students' written reports, provide statistics, and share their feedbacks on the structure and execution of the sessions. These sessions were implemented alongside a theoretical molecular modelling course but have also been used successfully as a standalone tutorial during specialized workshops. The availability of the material on our web page also facilitates this integration and dissemination and lends strength to the thesis of open-source science and education.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Estudantes , Ensino , Universidades , Comportamento Cooperativo , Humanos , Aprendizagem , Conformação Proteica , Estudantes/psicologia
4.
Methods Mol Biol ; 1268: 221-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25555727

RESUMO

Despite their biological importance in many regulatory processes, protein-peptide recognition mechanisms are difficult to study experimentally at the structural level because of the inherent flexibility of peptides and the often transient interactions on which they rely. Complementary methods like biomolecular docking are therefore required. The prediction of the three-dimensional structure of protein-peptide complexes raises unique challenges for computational algorithms, as exemplified by the recent introduction of protein-peptide targets in the blind international experiment CAPRI (Critical Assessment of PRedicted Interactions). Conventional protein-protein docking approaches are often struggling with the high flexibility of peptides whose short sizes impede protocols and scoring functions developed for larger interfaces. On the other side, protein-small ligand docking methods are unable to cope with the larger number of degrees of freedom in peptides compared to small molecules and the typically reduced available information to define the binding site. In this chapter, we describe a protocol to model protein-peptide complexes using the HADDOCK web server, working through a test case to illustrate every steps. The flexibility challenge that peptides represent is dealt with by combining elements of conformational selection and induced fit molecular recognition theories.


Assuntos
Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Algoritmos , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Ligação Proteica , Proteínas/química , Software
5.
PLoS One ; 8(3): e58769, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516555

RESUMO

Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Šinterface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Benchmarking , Análise por Conglomerados , Bases de Dados de Proteínas , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
6.
Biophys J ; 103(1): 29-37, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828329

RESUMO

Elemental biological functions such as molecular signal transduction are determined by the dynamic interplay between polypeptides and the membrane environment. Determining such supramolecular arrangements poses a significant challenge for classical structural biology methods. We introduce an iterative approach that combines magic-angle spinning solid-state NMR spectroscopy and atomistic molecular dynamics simulations for the determination of the structure and topology of membrane-bound systems with a resolution and level of accuracy difficult to obtain by either method alone. Our study focuses on the Shaker B ball peptide that is representative for rapid N-type inactivating domains of voltage-gated K(+) channels, associated with negatively charged lipid bilayers.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Sequência de Aminoácidos , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA