Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474072

RESUMO

This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.


Assuntos
COVID-19 , Proteoglicanas , Humanos , Lumicana , Síndrome de COVID-19 Pós-Aguda , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Biomarcadores
2.
Am J Physiol Cell Physiol ; 326(3): C810-C828, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223931

RESUMO

This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-ß/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.


Assuntos
Proteoglicanas de Heparan Sulfato , Via de Sinalização Hippo , Feminino , Gravidez , Humanos , Acetilcolinesterase , Matriz Extracelular , Proteínas da Matriz Extracelular , Via de Sinalização Wnt , Receptores Proteína Tirosina Quinases
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762403

RESUMO

This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.


Assuntos
Proteoglicanas de Heparan Sulfato , Fenômenos Fisiológicos , Glicosaminoglicanos , Glipicanas , Sindecanas
4.
J Neurochem ; 166(4): 637-653, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37492973

RESUMO

The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.


Assuntos
Glioma , Ácido Hialurônico , Humanos , Ácido Hialurônico/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glioma/metabolismo , Sistema Nervoso Central/metabolismo , Microambiente Tumoral
5.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986536

RESUMO

Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.

6.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978911

RESUMO

Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood-brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.

7.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674659

RESUMO

Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.


Assuntos
Glicosaminoglicanos , Proteoglicanas , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Simulação de Acoplamento Molecular , Inteligência Artificial , Ligantes , Heparitina Sulfato/metabolismo
8.
Front Biosci (Elite Ed) ; 14(4): 27, 2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36575843

RESUMO

The aim of this review is to highlight the beneficial attributes of flavonoids, a diverse family of widely-distributed polyphenolic phytochemicals that have beneficial cell and tissue protective properties. Phytochemicals are widely distributed in plants, herbs and shrubs used in traditional complimentary medical formulations for centuries. The bioactive components that convey beneficial medicinal effects in these complex herbal preparations are now being identified using network pharmacology and molecular docking procedures that identify their molecular targets. Flavonoids have anti-oxidant, anti-inflammatory, antiviral, antibacterial and anti-cancer properties that have inspired the development of potent multifunctional derivatised flavonoids of improved efficacy. The antiviral properties of flavonoids and the emergence of the severe acute respiratory syndrome (SARS-CoV-2) pandemic has resulted in a resurgence of interest in phytochemicals in the search for efficacious compounds that can prevent viral infection or replication, with many promising plant compounds identified. Promising semi-synthetic flavonoid derivatives have also been developed that inhibit multiple pathological neurodegenerative processes; these offer considerable promise in the treatment of diseases of cognitive decline. Clinical trials are currently being undertaken to evaluate the efficacy of dietary supplements rich in flavonoids for the treatment of virally-mediated diseases. Such trials are expected to identify flavonoids with cell and tissue protective properties that can be harnessed in biomedical applications that may serve as supportive adjunctive procedures to conventional anti-viral drug therapies against diseases such as COVID-19.


Assuntos
COVID-19 , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , SARS-CoV-2 , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Síndrome de COVID-19 Pós-Aguda , Simulação de Acoplamento Molecular , Antivirais/uso terapêutico , Antivirais/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico
9.
Stem Cells Dev ; 31(15-16): 406-430, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35102748

RESUMO

This review highlights the attributes of pentosan polysulfate (PPS) in the promotion of intervertebral disc (IVD) repair processes. PPS has been classified as a disease-modifying osteoarthritic drug (DMOAD) and many studies have demonstrated its positive attributes in the countering of degenerative changes occurring in cartilaginous tissues during the development of osteoarthritis (OA). Degenerative changes in the IVD also involve inflammatory cytokines, degradative proteases, and cell signaling pathways similar to those operative in the development of OA in articular cartilage. PPS acts as a heparan sulfate (HS) mimetic to effect its beneficial effects in cartilage. The IVD contains small cell membrane HS proteoglycans (HSPGs) such as syndecan, and glypican and a large multifunctional HS/chondroitin sulfate (CS) hybrid proteoglycan (HSPG2/perlecan), that have important matrix-stabilizing properties and sequester, control, and present growth factors from the FGF, VEGF, PDGF, and BMP families to cellular receptors to promote cell proliferation, differentiation, and matrix synthesis. HSPG2 also has chondrogenic properties and stimulates the synthesis of extracellular matrix (ECM) components and expansion of cartilaginous rudiments, and has roles in matrix stabilization and repair. Perlecan is a perinuclear and nuclear proteoglycan (PG) in IVD cells with roles in chromatin organization and control of transcription factor activity, immunolocalizes to stem cell niches in cartilage, promotes escape of stem cells from quiescent recycling, differentiation and attainment of pluripotency and migratory properties. These participate in tissue development and morphogenesis, ECM remodeling and repair. PPS also localizes in the nucleus of stromal stem cells, promotes development of chondroprogenitor cell lineages, ECM synthesis and repair and discal repair by resident disc cells. The availability of recombinant perlecan and PPS offers new opportunities in repair biology. These multifunctional agents offer welcome new developments in repair strategies for the IVD.


Assuntos
Cartilagem Articular , Heparinoides , Disco Intervertebral , Cartilagem Articular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparinoides/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Disco Intervertebral/metabolismo , Poliéster Sulfúrico de Pentosana/farmacologia , Células-Tronco/metabolismo
10.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922532

RESUMO

The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.


Assuntos
Núcleo Celular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias/patologia , Animais , Humanos , Neoplasias/metabolismo
11.
Biomolecules ; 11(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450893

RESUMO

Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.


Assuntos
Cartilagem Articular/patologia , Terapia Baseada em Transplante de Células e Tecidos , Proteoglicanas de Heparan Sulfato/uso terapêutico , Regeneração , Adulto , Biomarcadores/metabolismo , Biópsia , Agregação Celular , Proliferação de Células , Condrócitos/patologia , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/metabolismo , Feminino , Regulação da Expressão Gênica , Glucuronidase/metabolismo , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Células-Tronco/metabolismo , Doadores de Tecidos
12.
Biomolecules ; 10(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867198

RESUMO

This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.


Assuntos
Agrecanas/fisiologia , Neurogênese/fisiologia , Suporte de Carga , Agrecanas/química , Agrecanas/uso terapêutico , Animais , Biodiversidade , Antígenos CD57/fisiologia , Cartilagem/embriologia , Desenvolvimento Embrionário/fisiologia , Glicosaminoglicanos/química , Glicosaminoglicanos/fisiologia , Coração/embriologia , Coração/fisiologia , Humanos , Crista Neural/fisiologia , Relação Estrutura-Atividade
13.
Int J Biochem Cell Biol ; 128: 105849, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947020

RESUMO

This study reviewed some new aspects of the modular proteoglycan perlecan, a colossal proteoglycan with a 467 kDa core protein and five distinct functional domains. Perlecan is a heparan sulphate proteoglycan that transiently displays native CS sulphation motifs 4-C-3 and 7-D-4 during tissue morphogenesis these are expressed by progenitor cell populations during tissue development. Perlecan is susceptible to fragmentation by proteases during tissue development and in pathological tissues particularly in domains IV and V. The fragmentation pattern of domain IV has been suggested as a means of grading prostate cancer. Domain V of perlecan is of interest due to its interactive properties with integrin α5ß1 that promotes pericyte migration enhancing PDGF-BB-induced phosphorylation of PDGFRß, Src homology region 2 domain-containing phosphatase-2, and focal adhesion kinase supporting the repair of the blood brain barrier following ischaemic stroke. Fragments of domain V can also interact with α2ß1 integrin disrupting tube formation by endothelial cells. LG1-LG2, LG3 fragments can antagonise VEGFR2, and α2ß1 integrin interactions preventing angiogenesis by endothelial cells. These domain V fragments are of interest as potential anti-tumour agents. Perlecan attached to the luminal surfaces of endothelial cells in blood vessels acts as a flow sensor that signals back to endothelial and smooth muscle cells to regulate vascular tone and blood pressure. Perlecan also acts as a flow sensor in the lacuno-canalicular space regulating osteocytes and bone homeostasis. Along with its biomechanical regulatory properties in cartilaginous tissues this further extends the functional repertoire of this amazingly diverse functional proteoglycan.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas de Neoplasias/metabolismo , Osteócitos/metabolismo , Neoplasias da Próstata/metabolismo , Ânions , Feminino , Proteoglicanas de Heparan Sulfato/genética , Humanos , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Domínios Proteicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Adv Exp Med Biol ; 1245: 39-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266652

RESUMO

Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose ß1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.


Assuntos
Sulfato de Queratano , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteoglicanas
15.
Cartilage ; 11(2): 234-250, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31578084

RESUMO

OBJECTIVE: Examination of intervertebral disc (IVD) regeneration in an ovine annular lesion model. HYPOTHESIS: Sulfation motifs are important functional determinants in glycosaminoglycans (GAGs). Previous studies have correlated 3-B-3(-) and 7-D-4 chondroitin sulfate (CS) motifs in tissues undergoing morphogenetic transition in development. We hypothesize that these motifs may also be expressed in degenerate IVDs and may represent a reparative response. DESIGN: Induction of disc degeneration by 5 mm or 6 × 20 mm lesions in the annulus fibrosus (AF) over 6 or 3 to 6 months postoperation (PO). Tissue sections were stained with toluidine blue-fast green, 3-B-3(-) and 7-D-4 CS-sulfation motifs were immunolocalized in 3-month PO 6 × 20 mm lesion IVDs. Sulfated glycosaminoglycan (GAG), 3-B-3(-), and 7-D-4 epitopes were quantitated by ELISIA (enzyme-linked immunosorbent inhibition assay) in extracts of AF (lesion site and contralateral half) and nucleus pulposus (NP) 0, 3, and 6 months PO. RESULTS: Collagenous overgrowth of lesions occurred in the outer AF. Chondroid metaplasia in ~20% of the 6 × 20 mm affected discs resulted in integration of an outgrowth of NP tissue with the inner AF lamellae preventing propagation of the lesion. 3-B-3(-) and 7-D-4 CS sulfation motifs were immunolocalized in this chondroid tissue. ELISIA quantified CS sulfation motifs demonstrating an increase 3 to 6 months PO in the AF lesion and a reduction in sulfated GAG not evident in the contralateral AF. CONCLUSIONS: (1) Outer annular lesions underwent spontaneous repair. (2) Chondroid metaplasia of the inner 6 × 20 mm defect prevented its propagation suggesting an apparent reparative response.


Assuntos
Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos/metabolismo , Degeneração do Disco Intervertebral/fisiopatologia , Disco Intervertebral/fisiopatologia , Regeneração/fisiologia , Animais , Anel Fibroso/fisiopatologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitopos , Ovinos
16.
Biomedicines ; 7(3)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430999

RESUMO

This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the ß-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant "priority pathogens" and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.

17.
Cells ; 8(4)2019 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959928

RESUMO

The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.


Assuntos
Fibrocartilagem/fisiologia , Articulação do Joelho/fisiologia , Menisco/fisiologia , Humanos , Transcriptoma/genética , Suporte de Carga , Cicatrização
18.
Neural Regen Res ; 14(7): 1191-1195, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804244

RESUMO

Mucin-like glycoproteins have established roles in epithelial boundary protection and lubricative roles in some tissues. This mini-review illustrates alternative functional roles which rely on keratan sulphate and sialic acid modifications to mucin glycopolymers which convey charge properties suggestive of novel electroconductive properties not previously ascribed to these polymers. Many tumour cells express mucin-like glycopolymers modified with highly sulphated keratan sulphate and sialic which can be detected using diagnostic biosensors. The mucin-like keratan sulphate glycopolymer present in the ampullae of lorenzini is a remarkable sensory polymer which elasmobranch fish (sharks, rays, skate) use to detect weak electrical fields emitted through muscular activity of prey fish. Information on the proton gradients is conveyed to neuromast cells located at the base of the ampullae and mechanotransduced to neural networks. This ampullae keratan sulphate sensory gel is the most sensitive proton gradient detection polymer known in nature. This process is known as electrolocation, and allows the visualization of prey fish under conditions of low visibility. The bony fish have similar electroreceptors located along their lateral lines which consist of neuromast cells containing sensory hairs located within a cupula which contains a sensory gel polymer which detects distortions in fluid flow in channels within the lateral lines and signals are sent back to neural networks providing information on the environment around these fish. One species of dolphin, the Guiana dolphin, has electrosensory pits in its bill with similar roles to the ampullae but which have evolved from its vibrissal system. Only two terrestrial animals can undertake electrolocation, these are the Duck-billed platypus and long and short nosed Echidna. In this case the electrosensor is a highly evolved innervated mucous gland. The platypus has 40,000 electroreceptors around its bill through which it electrolocates food species. The platypus has poor eyesight, is a nocturnal feeder and closes its eyes, nostrils and ears when it hunts, so electrolocation is an essential sensory skill. Mammals also have sensory cells containing stereocilia which are important in audition in the organ of corti of the cochlea and in olfaction in the olfactory epithelium. The rods and cones of the retina also have an internal connecting cilium with roles in the transport of phototransduced chemical signals and activation of neurotransmitter release to the optic nerve. Mucin-like glycopolymer gels surround the stereocilia of these sensory hair cells but these are relatively poorly characterized however they deserve detailed characterization since they may have important functional attributes.

19.
Front Oncol ; 9: 1482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010611

RESUMO

Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.

20.
Biochem J ; 476(2): 225-243, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563944

RESUMO

Heparan sulfate (HS) regulates diverse cell signalling events in intervertebral disc development and homeostasis. The aim of the present study was to investigate the effect of ablation of perlecan HS/CS on murine intervertebral disc development. Genetic models carrying mutations in genes encoding HS biosynthetic enzymes have identified multiple roles for HS in tissue homeostasis. In the present study, we utilised an Hspg2 exon 3 null HS/CS-deficient mouse to assess the role of perlecan HS in disc cell regulation. HS makes many important contributions to growth factor sequestration, stabilisation/delivery, and activation of receptors directing cellular proliferation, differentiation, and assembly of extracellular matrix. Perlecan HS/CS-mediated interactions promote extracellular matrix assembly/stabilisation and tissue functional properties, and thus, removal of perlecan HS/CS should affect extracellular matrix function and homeostasis. Hspg2 exon 3 null intervertebral discs accumulated significantly greater glycosaminoglycan in the nucleus pulposus, annulus fibrosus, and vertebral growth plates than C57BL/6 wild-type (WT) I intervertebral discs. Proliferation of intervertebral disc progenitor cells was significantly higher in Hspg2 exon 3 null intervertebral discs, and these cells became hypertrophic by 12 weeks of age and were prominent in the vertebral growth plates but had a disorganised organisation. C57BL/6 WT vertebral growth plates contained regular columnar growth plate chondrocytes. Exostosis-like, ectopic bone formation occurred in Hspg2 exon 3 null intervertebral discs, and differences were evident in disc cell maturation and in matrix deposition in this genotype, indicating that perlecan HS/CS chains had cell and matrix interactive properties which repressively maintained tissue homeostasis in the adult intervertebral disc.


Assuntos
Proliferação de Células , Éxons , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Núcleo Pulposo/metabolismo , Animais , Condrócitos/metabolismo , Condrócitos/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glicosaminoglicanos/genética , Lâmina de Crescimento/patologia , Proteoglicanas de Heparan Sulfato/genética , Hipertrofia , Camundongos , Camundongos Mutantes , Núcleo Pulposo/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA