Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Radiat Oncol ; 13(1): 39, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514673

RESUMO

BACKGROUND: Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with 18F-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimorazole in vitro and in vivo. METHODS: In vitro MTS cell proliferation assays (OACM5 1.C SC1, human EAC cell line) were performed under normoxic and hypoxic (< 1%) conditions: control (100 µL PBS), nimorazole, irradiation (5, 10 or 20 Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in nude mice (OACM5 1.C SC1). Treatment was given daily for 5 consecutive days: (A) control (600 µl NaCl 0.9% intraperitoneally (IP)) (N = 5, n = 7), (B) RT (5 Gy/d) (N = 11, n = 20), (C) combination (nimorazole (200 mg/kg/d IP) 30 min before RT) (N = 13, n = 21). N = number of mice, n = number of tumors. 18F-FAZA PET/CT was performed before treatment and tumor to background (T/B) ratios were calculated. Relative tumor growth was calculated and tumor sections were examined histologically (hypoxia, proliferation). RESULTS: A T/B ≥ 3.59 on pre-treatment 18F-FAZA PET/CT was predictive for worse RT response (sensitivity 92.3%, specificity 71.4%). Radiation was less effective in hypoxic tumors (T/B ≥ 3.59) compared to normoxic tumors (T/B < 3.59) (P = 0.0025). In vitro, pre-treatment with nimorazole significantly decreased hypoxic radioresistance (P < 0.01) while in vivo, nimorazole enhanced the efficacy of RT to suppress cancer cell proliferation in hypoxic tumor areas (Ki67, P = 0.064), but did not affect macroscopic tumor growth. CONCLUSIONS: Tumor tissue hypoxia as measured with 18F-FAZA PET/CT is predictive for RT response in an EAC xenograft model. The radiosensitizing effect of nimorazole was questionable and requires further investigation.


Assuntos
Adenocarcinoma/patologia , Neoplasias Esofágicas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tolerância a Radiação , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Nimorazol/farmacologia , Nitroimidazóis , Compostos Radiofarmacêuticos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomaterials ; 158: 95-105, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29306747

RESUMO

Peritoneal metastasis is a major cause of death and preclinical models are urgently needed to enhance therapeutic progress. This study reports on a hybrid hydrogel-polylactic acid (PLA) scaffold that mimics the architecture of peritoneal metastases at the qualitative, quantitative and spatial level. Porous PLA scaffolds with controllable pore size, geometry and surface properties are functionalized by type I collagen hydrogel. Co-seeding of cancer-associated fibroblasts (CAF) increases cancer cell adhesion, recovery and exponential growth by in situ heterocellular spheroid formation. Scaffold implantation into the peritoneum allows long-term follow-up (>14 weeks) and results in a time-dependent increase in vascularization, which correlates with cancer cell colonization in vivo. CAF, endothelial cells, macrophages and cancer cells show spatial and quantitative aspects as similarly observed in patient-derived peritoneal metastases. CAF provide long-term secretion of complementary paracrine factors implicated in spheroid formation in vitro as well as in recruitment and organization of host cells in vivo. In conclusion, the multifaceted heterocellular interactions that occur within peritoneal metastases are reproduced in this tissue-engineered implantable scaffold model.


Assuntos
Neoplasias Peritoneais , Alicerces Teciduais , Microambiente Tumoral , Animais , Biomimética , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química
3.
Cancer Res ; 78(3): 659-670, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217764

RESUMO

Preoperative radiotherapy (RT) is a mainstay in the management of rectal cancer, a tumor characterized by desmoplastic stroma containing cancer-associated fibroblasts (CAF). Although CAFs are abundantly present, the effects of RT to CAF and its impact on cancer cells are unknown. We evaluated the damage responses of CAF to RT and investigated changes in colorectal cancer cell growth, transcriptome, metabolome, and kinome in response to paracrine signals emerging from irradiated CAF. RT to CAF induced DNA damage, p53 activation, cell-cycle arrest, and secretion of paracrine mediators, including insulin-like growth factor-1 (IGF1). Subsequently, RT-activated CAFs promoted survival of colorectal cancer cells, as well as a metabolic switch favoring glutamine consumption through IGF1 receptor (IGF1R) activation. RT followed by IGF1R neutralization in orthotopic colorectal cancer models reduced the number of mice with organ metastases. Activation of the downstream IGF1R mediator mTOR was significantly higher in matched (intrapatient) samples and in unmatched (interpatient) samples from rectal cancer patients after neoadjuvant chemoradiotherapy. Taken together, our data support the notion that paracrine IGF1/IGF1R signaling initiated by RT-activated CAF worsens colorectal cancer progression, establishing a preclinical rationale to target this activation loop to further improve clinical responses and patient survival.Significance: These findings reveal that paracrine IGF1/IGF1R signaling promotes colorectal cancer progression, establishing a preclinical rationale to target this activation loop. Cancer Res; 78(3); 659-70. ©2017 AACR.


Assuntos
Fibroblastos Associados a Câncer/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Raios gama/efeitos adversos , Comunicação Parácrina , Receptores de Somatomedina/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos da radiação , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Feminino , Humanos , Metaboloma , Camundongos , Camundongos Nus , Prognóstico , Transdução de Sinais , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncol Rep ; 38(1): 71-81, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504813

RESUMO

The present study aimed to investigate the orthotopic growth potential of two generally available esophageal adenocarcinoma cell lines, OE33 and OACM5 1.C, and a third in vivo selected subpopulation, OACM5 1.C SC1. One group of mice was subcutaneously injected in the hind legs. Tumor growth was measured with calipers. Another group was injected orthotopically in the distal esophageal wall through median laparotomy. Tumor development was evaluated macroscopically and confirmed microscopically. A subset of mice was evaluated with magnetic resonance imaging (MRI) to follow tumor progression. Additionally, functional cell line characteristics were evaluated in vitro (clonogenic, collagen invasion and sphere formation assays, and protein analysis of cell-cell adhesion and cytoskeletal proteins) to better understand xenograft behavior. OE33 cells were shown to be epithelial­like, whereas OACM5 1.C and OACM5 1.C SC1 were more mesenchymal-like. The three cell lines were non­invasive into native type I collagen gels. In vivo, OE33 cells led to 63.6 and 100% tumor nodules after orthotopic (n=12) and subcutaneous (n=8) injection, respectively. Adversely, OACM5 1.C cells did not lead to tumor formation after orthotopic injection (n=6) and only 50% of subcutaneous injections led to tumor nodules (n=8). However, the newly established cell line OACM5 1.C SC1 resulted in 33% tumor formation when orthotopically injected (n=6) and in 100% tumors when injected subcutaneously (n=8). The higher xenograft rate of OACM5 1.C SC1 (P<0.05) corresponded with a higher clonogenic potential compared to its parental cell line (P<0.0001). All models showed local tumor growth without metastasis formation. In conclusion, OACM5 1.C has a poor tumor take rate at an orthotopic and ectopic site. A subpopulation obtained through in vivo selection, OACM5 1.C SC1, gives a significant higher take rate, ectopically. Furthermore, OE33 establishes orthotopic (and subcutaneous) xenografts in mice. These models can be of interest for future studies, and their slow growth rates are a challenge for therapeutic intervention.


Assuntos
Adenocarcinoma/secundário , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/patologia , Animais , Apoptose , Humanos , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Eur Surg Res ; 58(3-4): 95-108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28002822

RESUMO

BACKGROUND/PURPOSE: Radiotherapy (RT) increases local tumor control in locally advanced rectal cancer, but complete histological response is seen in only a minority of cases. Antiangiogenic therapy has been proposed to improve RT efficacy by "normalizing" the tumor microvasculature. Here, we examined whether cediranib, a pan-vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor, improves microvascular function and tumor control in combination with RT in a mouse colorectal cancer (CRC) model. METHODS: CRC xenografts (HT29) were grown subcutaneously in mice. Animals were treated for 5 consecutive days with vehicle, RT (1.8 Gy daily), cediranib (6 mg/kg po), or combined therapy (cediranib 2 h prior to radiation). Tumor volume was measured with calipers. Vascular changes were analyzed by dynamic contrast-enhanced MRI, oxygenation and interstitial fluid pressure probes and histology. To investigate vascular changes more in detail, a second set of mice were fitted with titanium dorsal skinfold window chambers, wherein a HT29 tumor cell suspension was injected. In vivo fluorescence microscopy was performed before and after treatment (same treatment protocol). RESULTS: In vivo microscopy analyses showed that VEGFR inhibition with cediranib led to a "normalization" of the vessel wall, with decreased microvessel permeability (p < 0.0001) and tortuosity (p < 0.01), and a trend to decreased vessel diameters. This seemed to lead to lower tumor hypoxia rates in the cediranib and combination groups compared to the control and RT groups. This led to an increased tumor control in the combination group compared to controls or monotherapy (p < 0.0001). CONCLUSIONS: The combination of RT with cediranib enhances tumor control in a CRC xenograft mouse model. Microvascular analyses suggest that cediranib leads to vascular normalization and improved oxygenation.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Terapia Combinada , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Nus , Microvasos/efeitos dos fármacos , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA