Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 27(6): 197, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35748273

RESUMO

Tradescantia is a genus of herbaceous and perennial plants belonging to the Commelinaceae family and organized into three infrageneric classifications and 12 sections. More than 80 species within the genus have been used for centuries for medicinal purposes. Phytochemical compounds (from various species of the genus) such as coumarins, alkaloids, saponins, flavonoids, phenolics, tannins, steroids and terpenoids have recently been characterized and described with antioxidant, cytotoxic, anti-inflammatory, anticancer or antimicrobial properties. The objective of this review is to describe the different aspects of the genus Tradescantia, including its botanical characteristics, traditional uses, phytochemical composition, biological activities, and safety aspects.


Assuntos
Medicina Tradicional , Tradescantia , Antioxidantes/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Basic Clin Neurosci ; 13(6): 839-854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37323955

RESUMO

Introduction: The model for screening antidepressant-like activity in pre-clinical drug studies include, rat forced swimming test (FST). The reports on N-acetylcysteine (NAC) as an antioxidant supplement in stress related disorder is well documented. This study was aimed at potential antidepressant mechanism of N-Acetyl Cysteine (NAC), a glutamate precursor on FST animal model for screening antidepressant drugs using fluoxetine, a selective serotonin reuptake inhibitors (SSRIs) as standard antidepressant drug. Methods: Thirty adult male Wistar rats used for this study were randomly divided into six groups each with five (n=5) rats. The control group (A) received 1 ml of normal saline daily, group B served as the FST model, group C received 200mg/kg/day of NAC, group D received 20mg/kg/day of fluoxetine, group E the FST model treated with 200mg/kg/day of NAC, and F is the FST model treated with 20mg/kg/day of fluoxetine. Drugs were given orally. The effects of NAC on brain weights, the FST paradigms, sucrose preference test (SPT) for anhedonia were assessed and data analyzed using ANOVA where Tukey post-hoc test for statistical significance was set at (p < 0.05). The brains fixed in 4% paraformaldehyde, were processed and the paraffin embedded tissue were serially sectioned at 5 µm thick to be stained using Haematoxylin and Eosin (H and E) stain, immuno-histochemistry for synaptophysin (p38) and astrocytes (GFAP) activities in the prefrontal cortex (PFC). Results: Findings showed that NAC prevented FST-induced anxiety-like behaviors demonstrated by an increased SPT (that alleviates anhedonia), mobility time, and reduced immobility time. NAC caused an increase in brain weights and prevented FST-induced neurodegeneration, the proliferation of reactive astrocytes, and diminished synaptophysin immunoreactivity in the PFC similar to that seen in fluoxetine a standard anti-depressant drug. Conclusion: NAC treatment significantly exhibits its neuroprotective mechanism via inhibiting the proliferation of reactive astrocytes, which protects neurons and synapses from oxidative tissue damage induced by FST, hence an increase in synaptophysin activity that culminates in increased neural activity, increased SPT, and reduced immobility time.

3.
JBRA Assist Reprod ; 25(1): 34-43, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32490606

RESUMO

OBJECTIVE: The study's goal was to ascertain the contraceptive effects of Aqueous extract of Carica papaya on female rats by assessing changes in the body weight, estrous cycle, serum progesterone level and the cyto-architecture of the Utero-ovarian tissue. METHODS: We used twenty (20) healthy young Adult Female Albino rats. The study ran for 7 and 21 days, respectively. Each study group has their Experimental (treated 200mg/kg aqueous extract of Carica papaya seed extract) and Control group (n=5). We determined daily the phases and frequencies of the estrous cycles of the rats during the administration of the extract. We processed the utero-ovarian tissue for histological analysis, and we assessed serum progesterone level and the oestrus cycle pattern. RESULTS: There was a significant increase in body and Ovarian weights after 21 days of treatment when compared to controls and those treated for 7 days. However, uterine weight reduced significantly (p<0.05), serum progesterone level decreased (p<0.05) in the treated rats, mostly in those submitted to 21 day-treatments; the ovary showed marked degeneration of the theca cells, granulosa and corpus luteum, and loss of mucin granules in the uterine tissues. Carica papaya administered for 7 and 21 days caused the animals to have more proestrus and diestrus phases as compared to the control animals. The estrous cycle became irregular, with prolonged diestrous and proestrus phase. CONCLUSION: The aqueous extract of Carica papaya seeds caused antifertility, anti-implantation, by a reduction in progesterone level, disruption of oestrus pattern and histological alteration of utero-ovarian tissue.


Assuntos
Carica , Animais , Anticoncepcionais , Extratos Vegetais/farmacologia , Progesterona , Ratos , Ratos Wistar , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA