Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(9): e0060224, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39177329

RESUMO

The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE: This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.


Assuntos
Acetobacterium , Trifosfato de Adenosina , Ácidos Cafeicos , Ácidos Cafeicos/metabolismo , Trifosfato de Adenosina/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Retroalimentação Fisiológica , Oxirredução , Transporte de Elétrons
2.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38528735

RESUMO

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Poluentes Químicos da Água , Éter , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Éteres , Alcanossulfonatos , Etil-Éteres , Digestão , Estresse Oxidativo
3.
Environ Sci Technol Lett ; 10(9): 755-761, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719205

RESUMO

Fluoroalkylether substances (ether PFAS) constitute a large group of emerging PFAS with uncertain environmental fate. Among them, GenX is the well-known alternative to perfluorooctanoic acid and one of the six proposed PFAS to be regulated by the U.S. Environmental Protection Agency. This study investigated the structure-biodegradability relationship for 12 different ether PFAS with a carboxylic acid headgroup in activated sludge communities. Only polyfluorinated ethers with at least one -CH2- moiety adjacent to or a C=C bond in the proximity of the ether bond underwent active biotransformation via oxidative and hydrolytic O-dealkylation. The bioreactions at ether bonds led to the formation of unstable fluoroalcohol intermediates subject to spontaneous defluorination. We further demonstrated that this aerobic biotransformation/defluorination could complement the advanced reduction process in a treatment train system to achieve more cost-effective treatment for GenX and other recalcitrant perfluorinated ether PFAS. These findings provide essential insights into the environmental fate of ether PFAS, the design of biodegradable alternative PFAS, and the development of cost-effective ether PFAS treatment strategies.

4.
Environ Sci Technol ; 54(14): 8770-8778, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32551597

RESUMO

Antibiotic resistance is one of the most challenging issues in public health. Antibiotics have been increasingly used not only for humans and animals but also for crop protection as pesticides. Thus, antibiotics often coexist with pesticides in some environments. To investigate the effects of the co-occurring, nonantibiotic pesticides on the development of antibiotic resistance, we conducted long-term exposure experiments using an Escherichia coli K-12 model strain. The results reveal that (1) the exposure to pesticides (in mg/L) alone led to the emergence of mutants with significantly higher resistance to streptomycin; (2) the exposure to pesticides (in µg/L) together with a subinhibitory level (in high µg/L) of ampicillin synergistically stimulated the selection of ampicillin resistance and the cross-resistance to other antibiotics (i.e., ciprofloxacin, chloramphenicol, and tetracycline). Distinct and diversified genetic mutations emerged in the resistant mutants selected from the coexposure to both pesticides and ampicillin. The genetic mutations likely caused a holistic transcriptional regulation (e.g., biofilm formation, oxidative stress defense) when grown under antibiotic stress and led to increased antibiotic resistance. Together, these findings provide important fundamental insights into the development of antibiotic resistance and the resistance mechanisms under environmentally relevant conditions where antibiotics and nonantibiotic micropollutants coexist.


Assuntos
Escherichia coli K12 , Praguicidas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Praguicidas/toxicidade
5.
Environ Sci Technol ; 54(4): 2489-2499, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31999101

RESUMO

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.


Assuntos
Ácidos Carboxílicos , Fluorocarbonos , Elétrons , Éter , Éteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA