Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 49: 101207, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33711555

RESUMO

OBJECTIVES: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS: Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS: The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS: The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.


Assuntos
Hormônios Gastrointestinais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação do Apetite , Cirurgia Bariátrica , Peso Corporal , Ingestão de Alimentos , Células Enteroendócrinas , Polipeptídeo Inibidor Gástrico/farmacologia , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Redução de Peso
2.
Angew Chem Int Ed Engl ; 50(6): 1232-40, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21290490

RESUMO

Peptide thioesters play a key role in convergent protein synthesis strategies such as native chemical ligation, traceless Staudinger ligation, and Ag(+) -mediated thioester ligation. The Boc-based solid-phase synthesis provides a very reliable access to peptide thioesters. However, the acid lability of many peptide modifications and the requirements of most parallel peptide synthesizers call for the milder Fmoc-based solid-phase synthesis. The Fmoc-based synthesis of peptide thioesters is more cumbersome and typically proceeds with lower yields than the synthesis of peptide acids and peptide amides. The success of native chemical ligation and related technologies has sparked intensive research effort devoted to the development of new methods. The recent progress in this rapidly expanding field is reviewed.


Assuntos
Fluorenos/química , Peptídeos/síntese química , Amidas/química , Esterificação , Peptídeos/química
3.
J Am Chem Soc ; 132(32): 11110-8, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20662535

RESUMO

Peptide thioesters are important building blocks in the total synthesis of proteins and protein domains via fragment ligation. However, synthetic access of peptide thioesters still is a bottleneck of this powerful ligation chemistry. The commonly used methods for the Fmoc-based synthesis of peptide thioesters involve nonautomated solution steps that have to be performed after the solid-phase assembly of the peptide. Usually, HPLC purification is required. Herein, a method that enables crude peptides to be used in divergent native chemical ligations reactions is described. We present an Fmoc-based solid-phase synthesis of peptide thioesters with self-purification which facilitates access to these important building blocks, since the often cumbersome HPLC purification can be avoided. Fmoc-protected amino acids are coupled on a safety catch sulfonamide resin. The self-purifying effect is achieved through the combination of (a) N-terminal coupling of a cleavable cyclization linker and subsequent backbone-to-side chain cyclization, (b) activation of the sulfonamide linkage by alkylation, (c) thiolysis for the selective detachment of truncation products, and (d) TFA cleavage for the liberation of the desired peptide thioester in unprotected form. We have previously shown a method wherein cyclization was performed after carboxymethylation of the sulfonamide. However, the automation of this method was difficult and side reactions at methionine residues hampered the general applicability. The new design involves peptide synthesis on a modified carboxy-functionalized sulfonamide linker, a substantially milder activation of the sulfonamide bond and the use of monomethoxytrityl as well as 2-phenyl-isopropyl protecting groups. This approach solved the problems with methionine containing peptides and enabled the complete automation of the self-purifying synthesis of peptide thioesters. The study also addressed problems in the synthesis of difficult peptides. Aggregated truncation products can resist extraction and contaminate full-length thioesters obtained after TFA cleavage. It is shown that significant enhancements of the purity were achieved when mild acidic extractions were included in the wash protocols after thiolysis. The potential of the method was demonstrated in the parallel synthesis of 20-40 amino acid long peptide thioesters, which were obtained in excellent purities. The thioesters and cysteinyl peptides were used without purification in the assembly of immobilized SH3 protein domains of SHO1 in yeast. A cysteine scan by native chemical ligation suggested single amino acid to cysteine substitutions that (a) confer useful ligation yields, (b) support correct folding, and (c) sustain the function of the folded protein domain. The chemical synthesis of the SH3-domain of SHO1 succeeded in highest yields when cysteine placements at positions S23, F24, and E36 were avoided. The synthetic SH3 mutants were examined in a binding assay, which indicated that N27C, L30C, and D34C mutations provide functional SH3-domain.


Assuntos
Fluorenos/química , Proteínas Imobilizadas/química , Peptídeos/química , Peptídeos/síntese química , Compostos de Sulfidrila/química , Domínios de Homologia de src , Sequência de Aminoácidos , Automação , Cisteína/química , Ligantes , Proteínas de Membrana/química , Dados de Sequência Molecular , Dobramento de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA