RESUMO
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.
RESUMO
Type 2 reaction (T2R) or erythema nodosum leprosum (ENL), a sudden episode of acute inflammation predominantly affecting lepromatous leprosy patients (LL), characterized by a reduced cellular immune response. This possibly indicates a close relationship between the onset of T2R and the altered frequency, and functional activity of T lymphocytes, particularly of memory subsets. This study performed ex vivo and in vitro characterizations of T cell blood subpopulations from LL patients with or without T2R. In addition, the evaluation of activity of these subpopulations was performed by analyzing the frequency of these cells producing IFN-γ, TNF, and IL-10 by flow cytometry. Furthermore, the expression of transcription factors, for the differentiation of T cells, were analyzed by quantitative real-time polymerase chain reaction. Our results showed an increased frequency of CD8+/TNF+ effector memory T cells (TEM) among T2Rs. Moreover, there was evidence of a reduced frequency of CD4 and CD8+ IFN-γ-producing cells in T2R, and a reduced expression of STAT4 and TBX21. Finally, a significant and positive correlation between bacteriological index (BI) of T2R patients and CD4+/TNF+ and CD4+/IFN-γ+ T cells was observed. Thus, negative correlation between BI and the frequency of CD4+/IL-10+ T cells was noted. These results suggest that CD8+/TNF+ TEM are primarily responsible for the transient alteration in the immune response to Mycobacterium leprae in ENL patients. Thus, our study improves our understanding of pathogenic mechanisms and might suggest new therapeutic approaches for leprosy.