Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Lipídeos , RNA , Microambiente Tumoral , Animais , Cães , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , RNA/química , RNA/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química
2.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993772

RESUMO

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

3.
Cells ; 11(12)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741103

RESUMO

The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Movimento Celular , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
4.
J Neurooncol ; 151(1): 29-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32757093

RESUMO

INTRODUCTION: Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery. METHODS: In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies. RESULTS: Despite recent development of many promising nanoparticle systems to modulate immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation. CONCLUSION: Review of early preclinical studies and clinical trials provides foundational safety, feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of immunotherapy and translational oncology for patients with brain tumors.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Adjuvantes Imunológicos/uso terapêutico , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/uso terapêutico
5.
ACS Nano ; 13(12): 13884-13898, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31730332

RESUMO

Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted "responders" identified 2 days after vaccination had significantly smaller tumors 2-5 weeks after treatment and lived 73% longer than MRI-predicted "nonresponders". These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.


Assuntos
Antineoplásicos/farmacologia , Células Dendríticas/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Biomarcadores Tumorais/metabolismo , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Rastreamento de Células , Células Dendríticas/efeitos dos fármacos , Eletroporação , Compostos Férricos/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos C57BL , Transfecção
6.
J Hematol Oncol ; 12(1): 78, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311607

RESUMO

While promising, immunotherapy has yet to be fully unlocked for the preponderance of cancers where conventional chemoradiation reigns. This remains particularly evident in pediatric sarcomas where standard of care has not appreciably changed in decades. Importantly, pediatric bone sarcomas, like osteosarcoma and Ewing's sarcoma, possess unique tumor microenvironments driven by distinct molecular features, as do rhabdomyosarcomas and soft tissue sarcomas. A better understanding of each malignancy's biology, heterogeneity, and tumor microenvironment may lend new insights toward immunotherapeutic targets in novel platform technologies for cancer vaccines and adoptive cellular therapy. These advances may pave the way toward new treatments requisite for pediatric sarcomas and patients in need of new therapies.


Assuntos
Imunoterapia/métodos , Sarcoma/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Microambiente Tumoral
7.
Nano Lett ; 18(10): 6195-6206, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259750

RESUMO

Translation of nanoparticles (NPs) into human clinical trials for patients with refractory cancers has lagged due to unknown biologic reactivities of novel NP designs. To overcome these limitations, simple well-characterized mRNA lipid-NPs have been developed as cancer immunotherapeutic vaccines. While the preponderance of RNA lipid-NPs encoding for tumor-associated antigens or neoepitopes have been designed to target lymphoid organs, they remain encumbered by the profound intratumoral and systemic immunosuppression that may stymie an activated T cell response. Herein, we show that systemic localization of untargeted tumor RNA (derived from whole transcriptome) encapsulated in lipid-NPs, with excess positive charge, primes the peripheral and intratumoral milieu for response to immunotherapy. In immunologically resistant tumor models, these RNA-NPs activate the preponderance of systemic and intratumoral myeloid cells (characterized by coexpression of PD-L1 and CD86). Addition of immune checkpoint inhibitors (ICIs) (to animals primed with RNA-NPs) augments peripheral/intratumoral PD-1+CD8+ cells and mediates synergistic antitumor efficacy in settings where ICIs alone do not confer therapeutic benefit. These synergistic effects are mediated by type I interferon released from plasmacytoid dendritic cells (pDCs). In translational studies, personalized mRNA-NPs were safe and active in a client-owned canine with a spontaneous malignant glioma. In summary, we demonstrate widespread immune activation from tumor loaded RNA-NPs concomitant with inducible PD-L1 expression that can be therapeutically exploited. While immunotherapy remains effective for only a subset of cancer patients, combination therapy with systemic immunomodulating RNA-NPs may broaden its therapeutic potency.


Assuntos
Glioma/tratamento farmacológico , Imunoterapia , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Medicina de Precisão , Animais , Antígeno B7-2/antagonistas & inibidores , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Modelos Animais de Doenças , Cães , Glioma/imunologia , Glioma/patologia , Glioma/veterinária , Humanos , Lipídeos/química , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Nanopartículas/química , RNA Neoplásico/química , RNA Neoplásico/genética , RNA Neoplásico/imunologia , Transcriptoma/genética
8.
Int J Mol Sci ; 19(10)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249040

RESUMO

Cancer vaccines may be harnessed to incite immunity against poorly immunogenic tumors, however they have failed in therapeutic settings. Poor antigenicity coupled with systemic and intratumoral immune suppression have been significant drawbacks. RNA encoding for tumor associated or specific epitopes can serve as a more immunogenic and expeditious trigger of anti-tumor immunity. RNA stimulates innate immunity through toll like receptor stimulation producing type I interferon, and it mediates potent adaptive responses. Since RNA is inherently unstable, delivery systems have been developed to protect and deliver it to intended targets in vivo. In this review, we discuss liposomes as RNA delivery vehicles and their role as cancer vaccines.


Assuntos
Vacinas Anticâncer/administração & dosagem , Imunoterapia , Lipossomos/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , RNA/administração & dosagem , Animais , Vacinas Anticâncer/química , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/química , RNA/química
9.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056323

RESUMO

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Terapia Genética/métodos , Repetições de Microssatélites , Distrofia Miotônica/terapia , Transcrição Gênica , Processamento Alternativo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , Feminino , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Transgênicos , Mioblastos/metabolismo , Mioblastos/patologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , RNA Guia de Cinetoplastídeos/biossíntese , RNA Guia de Cinetoplastídeos/genética , Transdução Genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
10.
Mol Ther ; 25(12): 2661-2675, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28890324

RESUMO

The major drawback of the Baculovirus/Sf9 system for recombinant adeno-associated viral (rAAV) manufacturing is that most of the Bac-derived rAAV vector serotypes, with few exceptions, demonstrate altered capsid compositions and lower biological potencies. Here, we describe a new insect cell-based production platform utilizing attenuated Kozak sequence and a leaky ribosome scanning to achieve a serotype-specific modulation of AAV capsid proteins stoichiometry. By way of example, rAAV5 and rAAV9 were produced and comprehensively characterized side by side with HEK293-derived vectors. A mass spectrometry analysis documented a 3-fold increase in both viral protein (VP)1 and VP2 capsid protein content compared with human cell-derived vectors. Furthermore, we conducted an extensive analysis of encapsidated single-stranded viral DNA using next-generation sequencing and show a 6-fold reduction in collaterally packaged contaminating DNA for rAAV5 produced in insect cells. Consequently, the re-designed rAAVs demonstrated significantly higher biological potencies, even in a comparison with HEK293-manufactured rAAVs mediating, in the case of rAAV5, 4-fold higher transduction of brain tissues in mice. Thus, the described system yields rAAV vectors of superior infectivity and higher genetic identity providing a scalable platform for good manufacturing practice (GMP)-grade vector production.


Assuntos
Técnicas de Cultura de Células , Dependovirus/genética , Vetores Genéticos/genética , Replicação Viral , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Dependovirus/classificação , Dependovirus/fisiologia , Expressão Gênica , Ordem dos Genes , Genes Reporter , Células HEK293 , Humanos , Camundongos , Células Sf9 , Distribuição Tecidual , Transdução Genética , Carga Viral
11.
Neurotox Res ; 30(1): 14-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26678495

RESUMO

NURR1 is an essential transcription factor for the differentiation, maturation, and maintenance of midbrain dopaminergic neurons (DA neurons) as it has been demonstrated using knock-out mice. DA neurons of the substantia nigra pars compacta degenerate in Parkinson's disease (PD) and mutations in the Nurr1 gene have been associated with this human disease. Thus, the study of NURR1 actions in vivo is fundamental to understand the mechanisms of neuron generation and degeneration in the dopaminergic system. Here, we present and discuss findings indicating that NURR1 is a valuable molecular tool for the in vitro generation of DA neurons which could be used for modeling and studying PD in cell culture and in transplantation approaches. Transduction of Nurr1 alone or in combination with other transcription factors such as Foxa2, Ngn2, Ascl1, and Pitx3, induces the generation of DA neurons, which upon transplantation have the capacity to survive and restore motor behavior in animal models of PD. We show that the survival of transplanted neurons is increased when the Nurr1-transduced olfactory bulb stem cells are treated with GDNF. The use of these and other factors with the induced pluripotent stem cell (iPSC)-based technology or the direct reprogramming of astrocytes or fibroblasts into human DA neurons has produced encouraging results for the study of the cellular and molecular mechanisms of neurodegeneration in PD and for the search of new treatments for this disease.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurogênese/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos Knockout , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Bulbo Olfatório/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
12.
Mol Ther Methods Clin Dev ; 2: 15041, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793739

RESUMO

Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

13.
PLoS One ; 7(1): e29799, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242181

RESUMO

The Genetic screened homeobox 2 (Gsx2) transcription factor is required for the development of olfactory bulb (OB) and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs) is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE), as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula , Proteínas de Homeodomínio/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Biomarcadores/metabolismo , Agregação Celular , Morte Celular , Divisão Celular , Proliferação de Células , Embrião de Mamíferos/citologia , Vetores Genéticos/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios/citologia , Bulbo Olfatório/citologia , Oligodendroglia/citologia , Retroviridae/genética , Transdução Genética
14.
Neural Dev ; 5: 21, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735826

RESUMO

BACKGROUND: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. RESULTS: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of ß-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)ß without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. CONCLUSIONS: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Corpo Estriado/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/farmacologia , Animais , Proteínas de Transporte/genética , Contagem de Células , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Corpos Geniculados/embriologia , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Gravidez , Retinal Desidrogenase/deficiência , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo
15.
J Cell Sci ; 119(Pt 13): 2739-48, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16787946

RESUMO

Neural stem cells depend on insulin-like growth factor I (IGF-I) for differentiation. We analysed how activation and inhibition of the PI 3-kinase-Akt signalling affects the number and differentiation of mouse olfactory bulb stem cells (OBSCs). Stimulation of the pathway with insulin and/or IGF-I, led to an increase in Akt phosphorylated on residues Ser473 and Thr308 (P-Akt(Ser473) and P-Akt(Thr308), respectively) in proliferating OBSCs, and in differentiating cells. Conversely, P-Akt(Ser473) levels decreased by 50% in the OB of embryonic day 16.5-18.5 IGF-I knockout mouse embryos. Overexpression of PTEN, a negative regulator of the PI 3-kinase pathway, caused a reduction in the basal levels of P-Akt(Ser473) and P-Akt(Thr308) and a minor reduction in IGF-I-stimulated P-Akt(Ser473). Although PTEN overexpression decreased the proportion of neurons and astrocytes in the absence of insulin/IGF-I, it did not alter the proliferation or survival of OBSCs. Accordingly, overexpression of a catalytically inactive PTEN mutant promoted OBSCs differentiation. Inhibition of PI 3-kinase by LY294002 produced strong and moderate reductions in IGF-I-stimulated P-Akt(Ser473) and P-Akt(Thr308), respectively. Consequently, LY294002 reduced the proliferation of OBSCs and the number of neurons and astrocytes, and also augmented cell death. These findings indicate that OBSC differentiation is more sensitive to lower basal levels of P-Akt than proliferation or death. By regulating P-Akt levels in opposite ways, IGF-I and PTEN contribute to the fine control of neurogenesis in the olfactory bulb.


Assuntos
Indução Embrionária , Fator de Crescimento Insulin-Like I/fisiologia , Neurônios/fisiologia , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/fisiologia , Animais , Astrócitos/fisiologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Embrião de Mamíferos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Proteínas Mutantes/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA