Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 32(3): 387-95, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25556121

RESUMO

Dual purpose systems that treat wastewater and produce lipid rich microalgae biomass have been indicated as an option with great potential for production of biodiesel at a competitive cost. The aim of the present work was to develop a dual purpose system for the treatment of the anaerobic effluents from pig waste utilizing Neochloris oleoabundans and to evaluate its growth, lipid content and lipid profile of the harvested biomass and the removal of nutrients from the media. Cultures of N. oleoabundans were established in 4 L flat plate photobioreactors using diluted effluents from two different types of anaerobic filters, one packed with ceramic material (D1) and another one packed with volcanic gravel (D2). Maximum biomass concentration in D1 was 0.63 g L(-1) which was significantly higher than the one found in D2 (0.55 g L(-1)). Cultures were very efficient at nutrient removal: 98% for NNH4(+) and 98% for PO4(3-). Regarding total lipid content, diluted eflluents from D2 promoted a biomass containing 27.4% (dry weight) and D1 a biomass containing 22.4% (dry weight). Maximum lipid productivity was also higher in D2 compared to D1 (6.27±0.62 mg L(-1) d(-1) vs. 5.12±0.12 mg L(-1) d(-1)). Concerning the FAMEs profile in diluted effluents, the most abundant one was C18:1, followed by C18:2 and C16:0. The profile in D2 contained less C18:3 (linolenic acid) than the one in D1 (4.37% vs. 5.55%). In conclusion, this is the first report demonstrating that cultures of N. oleoabundans treating anaerobic effluents from pig waste are very efficient at nutrient removal and a biomass rich in lipids can be recovered. The maximum total lipid content and the most convenient FAMEs profile were obtained using effluents from a digester packed with volcanic gravel.


Assuntos
Biocombustíveis , Biomassa , Clorófitas/metabolismo , Lipídeos/química , Compostos de Amônio/química , Animais , Cerâmica/química , Meios de Cultura/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Esterco , Nitrogênio/química , Oxazinas/química , Fósforo/química , Fotobiorreatores , Suínos , Águas Residuárias
2.
N Biotechnol ; 30(6): 705-15, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23517680

RESUMO

The production of biodiesel utilizing microalgae has driven innovation worldwide, especially trying to overcome the current economic and technological limitations of the whole process. Within these efforts, the use of wastewater to cultivate oleaginous microalgae or the use of dual-purpose microalgae-bacteria-based systems that treat wastewater and produce oleaginous microalgae have become an attractive alternative. The aim of this work was to evaluate the population dynamics which occurred in mixed cultures of Neochloris oleoabundans with other native microalgae, in mixtures of a synthetic medium (BBM) and water of an urban polluted river. The effect of temperature, nutrient availability and the microscopic monitoring of the population dynamics in such mixed cultures were carried out. Furthermore, the isolation of the predominant consortium of diatoms and the evaluation of its kinetics of growth and its capacity for removal of pollutants was also performed. Results indicated that such green microalgae only predominated in mixtures containing 80% or 60% of the synthetic medium. In mixtures containing a volume of the polluted river higher than 40%, other microalgae predominated, especially diatoms of various genera. The diatom consortium isolated from a 100% of the river's water sampled in spring (April), was formed mainly by a population of Nitzchia frustulum and in less extent of Navicula sp. It showed a significantly higher specific growth rate when cultivated in water from the river, compared to cultures in synthetic modified diatom medium (MDM) and at 32°C, compared to cultures incubated at 25°C. The consortium was able to remove 95.45% and 95.78% of ammonia nitrogen, 60% and 62.5% of nitrates at 32°C and 25°C, respectively, after 2 days. It also removed 95% of phosphates at 32°C and 67% at 25°C after 4 days from the polluted river. Diatoms also showed significant accumulation of lipids after 10 days of cultivation when stained with Sudan III. In conclusion, such diatom consortium showed a large potential for being used in a dual-purpose system that could treat the water from polluted streams and that could produce lipid rich biomass.


Assuntos
Biomassa , Diatomáceas/fisiologia , Lipídeos , Consórcios Microbianos/fisiologia , Rios/microbiologia , Volvocida/fisiologia , Poluição da Água , Dinâmica Populacional , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA