Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Pharm Des ; 28(34): 2785-2794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36056830

RESUMO

Cancer nanotechnology takes advantage of nanoparticles to diagnose and treat cancer. The use of natural and synthetic polymers for drug delivery has become increasingly popular. Polymeric nanoparticles (PNPs) can be loaded with chemotherapeutics, small chemicals, and/or biological therapeutics. Major problems in delivering such therapeutics to the desired targets are associated with the lack of specificity and the low capacity of PNPs to cross cell membranes, which seems to be even more difficult to overcome in multidrugresistant cancer cells with rigid lipid bilayers. Despite the progress of these nanocarrier delivery systems (NDSs), active targeting approaches to complement the enhanced permeability and retention (EPR) effect are necessary to improve their therapeutic efficiency and reduce systemic toxicity. For this, a targeting moiety is required to deliver the nanocarrier systems to a specific location. A strategy to overcome these limitations and raise the uptake of PNPs is the conjugation with RNA aptamers (RNApt) with specificity for cancer cells. The site-directed delivery of drugs is made by the functionalization of these specific ligands on the NDSs surface, thereby creating specificity for features of cancer cell membranes or an overexpressed target/receptor exposed to those cells. Despite the advances in the field, NDSs development and functionalization are still in their early stages and numerous challenges are expected to impact the technology. Thus, RNApt supplies a promising reply to the common problem related to drug delivery by NDSs. This review summarizes the current knowledge on the use of RNApt to generate functionalized PNPs for cancer therapy, discussing the most relevant studies in the area.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Polímeros , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
2.
Nutrients ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079821

RESUMO

(Poly)phenols have anti-diabetic properties that are mediated through the regulation of the main biomarkers associated with type 2 diabetes mellitus (T2DM) (fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), insulin resistance (IR)), as well as the modulation of other metabolic, inflammatory and oxidative stress pathways. A wide range of human and pre-clinical studies supports these effects for different plant products containing mixed (poly)phenols (e.g., berries, cocoa, tea) and for some single compounds (e.g., resveratrol). We went through some of the latest human intervention trials and pre-clinical studies looking at (poly)phenols against T2DM to update the current evidence and to examine the progress in this field to achieve consistent proof of the anti-diabetic benefits of these compounds. Overall, the reported effects remain small and highly variable, and the accumulated data are still limited and contradictory, as shown by recent meta-analyses. We found newly published studies with better experimental strategies, but there were also examples of studies that still need to be improved. Herein, we highlight some of the main aspects that still need to be considered in future studies and reinforce the messages that need to be taken on board to achieve consistent evidence of the anti-diabetic effects of (poly)phenols.


Assuntos
Diabetes Mellitus Tipo 2 , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Jejum , Hemoglobinas Glicadas/metabolismo , Humanos , Fenóis/farmacologia
3.
Foods ; 11(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407148

RESUMO

Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.

4.
Front Endocrinol (Lausanne) ; 13: 1008418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589826

RESUMO

Introduction: Diabetes is one of the major metabolic diseases worldwide. Despite being a complex systemic pathology, the aggregation and deposition of Islet Amyloid Polypeptide (IAPP), or amylin, is a recognized histopathological marker of the disease. Although IAPP proteotoxicity represents an important trigger of ß-cell dysfunction and ultimately death, its exploitation as a therapeutic tool remains underdeveloped. The bioactivity of (poly)phenols towards inhibition of pathological protein aggregation is well known, however, most of the identified molecules have limited bioavailability. Methods: Using a strategy combining in silico, cell-free and cell studies, we scrutinized a unique in-house collection of (poly)phenol metabolites predicted to appear in the human circulation after (poly)phenols ingestion. Results: We identified urolithin B as a potent inhibitor of IAPP aggregation and a powerful modulator of cell homeostasis pathways. Urolithin B was shown to affect IAPP aggregation pattern, delaying the formation of amyloid fibrils and altering their size and morphology. The molecular mechanisms underlying urolithin B-mediated protection include protein clearance pathways, mitochondrial function, and cell cycle ultimately rescuing IAPP-mediated cell dysfunction and death. Discussion: In brief, our study uncovered urolithin B as a novel small molecule targeting IAPP pathological aggregation with potential to be exploited as a therapeutic tool for mitigating cellular dysfunction in diabetes. Resulting from the colonic metabolism of dietary ellagic acid in the human body, urolithin B bioactivity has the potential to be explored in nutritional, nutraceutical, and pharmacological perspectives.


Assuntos
Diabetes Mellitus , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Cumarínicos/farmacologia , Fenóis
5.
Nutrients ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959837

RESUMO

Diabetes remains one of the leading causes of deaths and co-morbidities in the world, with tremendous human, social and economic costs. Therefore, despite therapeutics and technological advancements, improved strategies to tackle diabetes management are still needed. One of the suggested strategies is the consumption of (poly)phenols. Positive outcomes of dietary (poly)phenols have been pointed out towards different features in diabetes. This is the case of ellagitannins, which are present in numerous foodstuffs such as pomegranate, berries, and nuts. Ellagitannins have been reported to have a multitude of effects on metabolic diseases. However, these compounds have high molecular weight and do not reach circulation at effective concentrations, being metabolized in smaller compounds. After being metabolized into ellagic acid in the small intestine, the colonic microbiota hydrolyzes and metabolizes ellagic acid into dibenzopyran-6-one derivatives, known as urolithins. These low molecular weight compounds reach circulation in considerable concentrations ranging until micromolar levels, capable of reaching target tissues. Different urolithins are formed throughout the metabolization process, but urolithin A, isourolithin A, and urolithin B, and their phase-II metabolites are the most frequent ones. In recent years, urolithins have been the focus of attention in regard to their effects on a multiplicity of chronic diseases, including cancer and diabetes. In this review, we will discuss the latest advances about the protective effects of urolithins on diabetes.


Assuntos
Cumarínicos/farmacocinética , Diabetes Mellitus/terapia , Disponibilidade Biológica , Frutas/química , Humanos , Taninos Hidrolisáveis/farmacocinética , Nozes/química , Punica granatum/química , Substâncias Protetoras
6.
Nutrients ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578818

RESUMO

The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.


Assuntos
Dieta/métodos , Microbioma Gastrointestinal , Doenças Neurodegenerativas/sangue , Polifenóis/sangue , Idoso , Humanos
7.
Neural Regen Res ; 16(6): 1127-1130, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269760

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide. Due to population ageing, the incidence of AD is increasing. AD patients develop cognitive decline and dementia, features for which is known, requiring permanent care. This poses a major socio-economic burden on healthcare systems as AD patients' relatives and healthcare workers are forced to cope with rising numbers of affected people. Despite recent advances, AD pathological mechanisms are not fully understood. Nevertheless, it is clear that the amyloid beta (Aß) peptide, which forms amyloid plaques in AD patients' brains, plays a key role. Type 2 diabetes, the most common form of diabetes, affects hundreds of million people globally. Islet amyloid polypeptide (IAPP) is a hormone co-produced and secreted with insulin in pancreatic ß-cells, with a key role in diabetes, as it helps regulate glucose levels and control adiposity and satiation. Similarly to Aß, IAPP is very amyloidogenic, generating intracellular amyloid deposits that cause ß-cell dysfunction and death. It is now clear that IAPP can also have a pathological role in AD, decreasing cognitive function. IAPP harms the blood-brain barrier, directly interacts and co-deposits with Aß, promoting diabetes-associated dementia. IAPP can cause a metabolic dysfunction in the brain, leading to other diabetes-related forms of AD. Thus, here we discuss IAPP association with diabetes, Aß and dementia, in the context of what we designate a "diabetes brain phenotype" AD hypothesis. Such approach helps to set a conceptual framework for future IAPP-based drugs against AD.

8.
Front Microbiol ; 11: 2035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013747

RESUMO

Diabetes is a major public health issue that has attained alarming levels worldwide. Pancreatic aggregates of human islet amyloid polypeptide (IAPP) represent a major histopathological hallmark of type 2 diabetes. IAPP is expressed in ß-cells as pre-pro-IAPP (ppIAPP) that is first processed to pro-IAPP (pIAPP) and finally to its mature form (matIAPP), being released upon glucose stimulation together with insulin. Impairment and overload of the IAPP processing machinery seem to be associated with the accumulation of immature IAPP species and the formation of toxic intracellular oligomers, which have been associated with ß-cell dyshomeostasis and apoptosis. Nevertheless, the pathological importance of these immature IAPP forms for the assembly and cytotoxicity of these oligomers is not completely understood. Here, we describe the generation and characterization of unprecedented Saccharomyces cerevisiae models recapitulating IAPP intracellular oligomerization. Expression of green fluorescent protein (GFP) fusions of human ppIAPP, pIAPP, and matIAPP proved to be toxic in yeast cells at different extents, with ppIAPP exerting the most deleterious effect on yeast growth and cell viability. Although expression of all IAPP constructs induced the formation of intracellular aggregates in yeast cells, our data point out the accumulation of insoluble oligomeric species enriched in immature ppIAPP as the trigger of the high toxicity mediated by this construct in cells expressing ppIAPP-GFP. In addition, MS/MS analysis indicated that oligomeric species found in the ppIAPP-GFP lysates contain the N-terminal sequence of the propeptide fused to GFP. These models represent powerful tools for future research focused on the relevance of immature forms in IAPP-induced toxicity. Furthermore, they are extremely useful in high-throughput screenings for genetic and chemical modulators of IAPP aggregation.

9.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858836

RESUMO

Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.

10.
Genes (Basel) ; 11(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708255

RESUMO

Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Luteolina/química , Fármacos Neuroprotetores/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Supressão Genética
11.
Front Mol Neurosci ; 13: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265649

RESUMO

Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic ß-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with ß-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood-brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a "diabetes brain phenotype" hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.

12.
Eur J Nutr ; 59(4): 1329-1343, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32052147

RESUMO

PURPOSE: (Poly)phenols have been reported to confer protective effects against type 2 diabetes but the precise association remains elusive. This meta-analysis aimed to assess the effects of (poly)phenol intake on well-established biomarkers in people with type 2 diabetes or at risk of developing diabetes. METHODS: A systematic search was conducted using the following selection criteria: (1) human randomized controlled trials involving individuals with prediabetes and type 2 diabetes; (2) one or more of the following biomarkers: glucose, glycated haemoglobin (HbA1c), insulin, pro-insulin, homeostatic model assessment of insulin resistance (HOMA-IR), islet amyloid polypeptide (IAPP)/amylin, pro-IAPP/pro-amylin, glucagon, C-peptide; (3) chronic intervention with pure or enriched mixtures of (poly)phenols. From 488 references, 88 were assessed for eligibility; data were extracted from 27 studies and 20 were used for meta-analysis. The groups included in the meta-analysis were: (poly)phenol mixtures, isoflavones, flavanols, anthocyanins and resveratrol. RESULTS: Estimated intervention/control mean differences evidenced that, overall, the consumption of (poly)phenols contributed to reduced fasting glucose levels (- 3.32 mg/dL; 95% CI - 5.86, - 0.77; P = 0.011). Hb1Ac was only slightly reduced (- 0.24%; 95% CI - 0.43, - 0.044; P = 0.016) whereas the levels of insulin and HOMA-IR were not altered. Subgroup comparative analyses indicated a stronger effect on blood glucose in individuals with diabetes (- 5.86 mg/dL, 95% CI - 11.34, - 0.39; P = 0.036) and this effect was even stronger in individuals taking anti-diabetic medication (- 10.17 mg/dL, 95% CI - 16.59, - 3.75; P = 0.002). CONCLUSIONS: Our results support that the consumption of (poly)phenols may contribute to lower glucose levels in individuals with type 2 diabetes or at risk of diabetes and that these compounds may also act in combination with anti-diabetic drugs.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/sangue , Hipoglicemiantes/uso terapêutico , Fenóis/sangue , Fenóis/uso terapêutico , Biomarcadores/sangue , Terapia Combinada/métodos , Humanos , Polifenóis/sangue , Polifenóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
BMC Genomics ; 20(1): 995, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856735

RESUMO

BACKGROUND: Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS: To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS: We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.


Assuntos
Flavonoides/biossíntese , Frutas/genética , Genes de Plantas , Rubus/genética , Transcriptoma , Antocianinas/biossíntese , Vias Biossintéticas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Magnoliopsida/classificação , Magnoliopsida/genética , Fenóis/análise , Filogenia , Proteínas de Plantas/genética , RNA-Seq , Rubus/química , Rubus/crescimento & desenvolvimento , Rubus/metabolismo
15.
Curr Pharm Des ; 24(19): 2076-2106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956617

RESUMO

Our society is currently experiencing increased lifespan; one of the top causes for the high incidence of neurodegenerative disorders. The lack of effective treatments delaying or blocking disease progression has encouraged the active search for novel therapies. Many evidences support the protective role of phytochemicals in the prevention of neurodegenerative diseases, particularly (poly)phenols. In this review, we described the use of cellular-based models of neurodegenerative diseases and the benefits of their use as potent tools in the search for bioactive molecules, particularly (poly)phenols. Studies to assess the biological activity of (poly)phenols involve experimentation with in vitro and in vivo systems. In vitro systems are a useful tool as a first approach to test the underlined molecular mechanisms of candidate molecules. They can provide valuable information about biological activity, which can be then used to design animal and human intervention studies.


Assuntos
Modelos Biológicos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
16.
Biochim Biophys Acta Gene Regul Mech ; 1860(4): 472-481, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188921

RESUMO

Response to arsenic stress in Saccharomyces cerevisiae is orchestrated by the regulatory protein Yap8, which mediates transcriptional activation of ACR2 and ACR3. This study contributes to the state of art knowledge of the molecular mechanisms underlying yeast stress response to arsenate as it provides the genetic and biochemical evidences that Yap8, through cysteine residues 132, 137, and 274, is the sensor of presence of arsenate in the cytosol. Moreover, it is here reported for the first time the essential role of the Mediator complex in the transcriptional activation of ACR2 by Yap8. Based on our data, we propose an order-of-function map to recapitulate the sequence of events taking place in cells injured with arsenate. Modification of the sulfhydryl state of these cysteines converts Yap8 in its activated form, triggering the recruitment of the Mediator complex to the ACR2/ACR3 promoter, through the interaction with the tail subunit Med2. The Mediator complex then transfers the regulatory signals conveyed by Yap8 to the core transcriptional machinery, which culminates with TBP occupancy, ACR2 upregulation and cell adaptation to arsenate stress. Additional co-factors are required for the transcriptional activation of ACR2 by Yap8, particularly the nucleosome remodeling activity of SWI/SNF and SAGA complexes.


Assuntos
Arseniato Redutases/genética , Arseniatos/toxicidade , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Complexo Mediador/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/genética , Arseniato Redutases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Cisteína/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos
17.
Curr Neuropharmacol ; 15(4): 562-594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27784225

RESUMO

BACKGROUND: Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS: In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS: The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION: The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Humanos
18.
FEBS Lett ; 589(19 Pt B): 2841-9, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26296316

RESUMO

Yap2 is a cadmium responsive transcription factor that interacts with MAPK-activated protein (MAPKAP) kinase Rck1. We show that Rck1 deletion confers protection against cadmium toxicity and that the mechanism underlying this observation relies on Yap2. Rck1 removal from the yeast genome potentiates Yap2 activity by increasing protein half-life and delaying its nuclear export. As a consequence, several Yap2 antioxidant targets are over-activated by a mechanism that also requires Yap1. Several genes of the cell wall integrity (CWI) pathway are upregulated under cadmium stress in a Yap2 dependent way. We showed that deletion of CWI genes renders yeast cells more sensitive to cadmium. These findings led us to suggest that in response to cadmium stress Yap2 may serve a dual purpose: oxidative stress attenuation and cell wall maintenance.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antioxidantes/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
19.
J Biol Chem ; 290(30): 18584-95, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26063801

RESUMO

Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Ligação ao Ferro/biossíntese , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transporte Biológico/genética , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Mutação , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
20.
Oxid Med Cell Longev ; 2012: 128647, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701145

RESUMO

Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinson's, Alzheimer's, and Huntington's diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreich's ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.


Assuntos
Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Homeostase , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA