Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Exp Ther Med ; 27(4): 158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476893

RESUMO

Toll-like receptor 2 (TLR2) is an important sensor for innate immune cells, including neutrophils, for the recognition of pathogen infection. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is a TLR2 ligand. LTA-induced TLR2 signaling pathways are well established in neutrophils. However, experimental studies regarding transcriptional regulation and the molecular mechanisms in primary human neutrophils are limited due to their short lifespan. The promyelocytic leukemia cell line, HL-60, can differentiate into a neutrophil-like phenotype following treatment with dimethyl sulfoxide. The aim of the present study was to investigate whether differentiated HL-60 (dHL-60) cells induced a similar gene expression profile upon LTA treatment as that previously determined for primary human neutrophils. After 4 or 24 h of Staphylococcus aureus LTA treatment, undifferentiated HL-60 (uHL-60) and dHL-60 cells were collected for RNA sequencing. The results demonstrated that hundreds of identical differentially expressed genes (DEGs) were observed in 1 and 10 µg/ml LTA-treated dHL-60 cells following 4 and 24 h of incubation, while almost no DEGs between LTA-treated HL-60 and dHL-60 cells were observed. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG), it was noted that the pathways of shared DEGs between the 1 and 10 µg/ml LTA-treated dHL-60 cells at both time points were significantly enriched in immune and inflammatory response-related pathways, such as cellular response to tumor necrosis factor, interleukin-1, interferon γ, neutrophil chemotaxis, the NF-κB signaling pathway and the Toll-like receptor signaling pathway. In addition, when comparing the effect of 1 and 10 µg/ml LTA treatment on dHL60 cells, it was found that all enriched GO and KEGG pathways were associated with the TLR signaling pathways of neutrophils. The results of the present study provided important information for the implementation of mRNA profiling in LTA-treated dHL-60 cells and may indicate the feasibility of using dHL-60 cells as a research model for TLR2 signaling in human neutrophils.

2.
Poult Sci ; 103(2): 103332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128459

RESUMO

In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Infecções por Flavivirus/veterinária , Gansos , Galinhas , Filogenia , Virulência , Cetuximab , Doenças das Aves Domésticas/patologia , Patos
3.
Cancers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894479

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive cancers with a low overall survival rate. The treatment of GBM is challenging due to the presence of the blood-brain barrier (BBB), which hinders drug delivery. Invasive procedures alone are not effective at completely removing such tumors. Hence, identifying the crucial pathways and biomarkers for the treatment of GBM is of prime importance. We conducted this study to identify the pathways associated with GBM. We used The Cancer Genome Atlas (TCGA) GBM genomic dataset to identify differentially expressed genes (DEGs). We investigated the prognostic values of the guanine nucleotide-binding protein G(i) alpha subunit (GNAI) family of genes in GBM using a Chinese Glioma Genome Atlas (CGGA) dataset. Within this dataset, we observed the association in the tumor microenvironment between the gene expression of GNAI subunit 3 (GNAI3) and a poor prognosis. MetaCore and gene ontology (GO) analyses were conducted to explore the role of GNAI3 in co-expressed genes and associated signaling pathways using a transcript analysis. Notable pathways included "Cytoskeleton remodeling regulation of actin cytoskeleton organization by the kinase effectors of Rho GTPases" and "Immune response B cell antigen receptor (BCR) pathway". A single-cell analysis was used to assess GNAI3 expression in GBM. The results demonstrated that GNAI family genes, specifically GNAI3, were significantly associated with carcinogenesis and malignancy in GBM patients. Our findings suggest that the GNAI3 gene holds potential as a prognostic biomarker for GBM.

4.
Theranostics ; 13(13): 4497-4511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649597

RESUMO

Rationale: Challenges such as developing a universal tumor-specific probe for tumor margin identification in diverse tumors with an easy-operative and fast-imaging pattern still exist. Hence, in the present study, a rapidly "off-on" near-infrared (NIR) fluorescent probe NBD with pH-activatable fluorescence and a large Stokes shift was constructed for spray mediated near-instant and precise clinical tumor margins identification. Methods: NBD was designed and synthesized by introducing both diphenyl amino group and benzo[e]indolium to ß-carboline at C-6 and C-3 positions respectively. The optical properties of NBD was characterized by absorption spectra, fluorescence spectra. Subsequently, we investigated its pH-dependent mechanism by 1H NMR and density functional theory (DFT) calculation. NBD was further under deeper investigation into its imaging performance in nude mice models (subcutaneous, orthotopic, metastatic tumor), and clinical tissues from patients with three clinically representative tumors (liver cancer, colon cancer, and lung cancer). Results: It was found that NBD had NIR fluorescence (742 nm), a large Stokes shift (160 nm), and two-photon absorbance (1040 nm). Fluorescence quantum yield (ФF) increased by 5.5-fold when pH decreased from 7.4 to 4.0, to show pH-dependent property. Furthermore, NBD could not only selectively light up all four cancer cell lines, but also delineate xenograft tumor and orthotopic microtumor to guide surgical tumor resection, and track metastatic tissues. Particularly, after simple topical spray (three minutes later), NBD could rapidly and precisely distinguish the boundary ranges of three kinds of clinical cancer specimens including liver, colon, and lung cancers, with high tumor-to-normal tissue signal ratios (6.48~9.80). Conclusions: Therefore, the proposed fluorescent probe NBD may serve as a versatile NIR fluorogenic spray for the near-instant visualization of tumor margins and assisting surgeons in surgerical resection of clinical cancers.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Corantes Fluorescentes , Camundongos Nus , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Concentração de Íons de Hidrogênio
5.
J Colloid Interface Sci ; 648: 994-1005, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331080

RESUMO

Chemodynamic therapy (CDT) utilizing toxic hydroxyl radicals (·OH) to kill cancer cells exhibits huge potentiality in antitumor treatment. However, inadequate acidity, insufficient hydrogen peroxide (H2O2) amount, and overexpressed reduced glutathione (GSH) inside cancer cells severely restrict the efficacy of CDT. Although numerous efforts have been made, fabricating a versatile CDT material for surmounting these obstacles simultaneously is still a great challenge, especially for supramolecular materials owing to lacking an active metal unit for the Fenton reaction. Here, we intriguingly proposed a powerful supramolecular nanoagent (GOx@GANPs) based on the host-guest interaction between pillar[6]arene and ferrocene for all-sided boosting CDT efficacy via in situ cascade reactions. GOx@GANPs could stimulate intracellular glucose conversion into H+ and H2O2 to optimize the in situ Fenton reaction conditions and continuously produce sufficient •OH. Meanwhile, consumption of the original intracellular GSH pool and inhibition of GSH regeneration were synchronously achieved through the GSH-responsive gambogic acid prodrug and cutting off adenosine triphosphate (ATP) supply for GSH resynthesis, respectively. This complete GSH exhausting characteristic of GOx@GANPs effectively suppressed •OH elimination, ultimately resulting in a superior CDT effect. Furthermore, GOx@GANPs also produced synergistic effects of starvation therapy, chemotherapy, and CDT, exhibiting low toxicity toward normal tissues. Thus, this work introduces a valuable way for optimizing and elevating CDT efficiency and synergistic treatment of tumors.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Peróxido de Hidrogênio/farmacologia , Trifosfato de Adenosina , Glucose , Radical Hidroxila , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
6.
Biosens Bioelectron ; 234: 115343, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167656

RESUMO

A fluorescent diagnostic probe for real-time intraoperative image-guided tumor resection can significantly improve the efficiency and quality of oncological therapy, but their development is challenging. Herein, a novel fluorescent diagnostic probe called HLTC based on ß-carboline was designed and synthesized. HLTC was found to show a ∼10-fold enhancement of fluorescence quantum field with pH from 7.4 to 4.0, indicating its imaging potential in acid environment which is a typical hallmark of the tumor microenvironment (TME). Following fluorescence microscopy imaging showed HLTC could emit specific signals in cancer cells and sections, by both one-photon excitation and two-photon excitation. Importantly, HLTC enabled the precise and rapid delineation of both transplanted tumor and clinical tumor tissues within several minutes of simple topical spray. The tumor-to-background ratio (TBR) was up to 10.2 ± 1.0 at clinical liver cancer tissues and 9.9 ± 0.3 at clinical colon cancer tissues, allowing precise tumor margin identification and the effective guidance of surgical tumor resection. Furthermore, CCK8 assay, pharmacokinetic evaluation, blood analysis and H&E staining were performed, which verified high biocompatibility and biosafety of HLTC at working concentration. These results reveal the exciting potential of this small-molecule fluorescent diagnostic probe for real-time fluorescence-based navigation during surgical tumor resection.


Assuntos
Técnicas Biossensoriais , Neoplasias Hepáticas , Humanos , Corantes Fluorescentes/química , Microambiente Tumoral
7.
J Dent Sci ; 18(2): 767-774, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021263

RESUMO

Background/purpose: In Taiwan, the dental radiology has a history of more than 100 years. However, medical radiation schools or teaching hospitals have not yet established a set of standard learning content for dental radiology internship. Materials and methods: We used the observational method and dental radiology teaching survey to explore the connotation of clinical dental radiology education for medical radiation students in Taiwan. Results: There were 64 dental departments of hospitals with their own independent dental radiology departments in Taiwan in 2022. Among them, 58 (90.63%) were in the teaching hospitals. Of the 58 dental radiology departments in the teaching hospitals, 40 (68.97%) had medical radiation interns in their dental radiology departments. There was a complete set of seven training items for dental radiology internship. The mean training items in the medical centers (4.94) was significantly higher than that in the regional hospital (3.9) (P < 0.05). No matter what level of hospital, it is the most common way to implement the training mode with preclinical exercises and then clinical practice. Conclusion: In Taiwan, the current status of dental radiology teachers in the teaching hospital is indeed seriously insufficient. It is necessary to establish a standard dental radiology education system, including setting one common dental radiology subject for medical radiation students, and the relevant regulations to formulate the basic requirements of the training items and training hours for dental radiology internship. Thus, medical radiation interns can acquire the operation skills related to dental X-ray machines after completing the internship training.

8.
Int J Med Sci ; 20(1): 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619227

RESUMO

The complexity of lung adenocarcinoma (LUAD) including many interacting biological processes makes it difficult to find therapeutic biomarkers for treatment. Previous studies demonstrated that PSMG (proteasome assembly chaperone) family members regulate the degradation of abnormal proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. Therefore, we used a holistic bioinformatics approach to explore PSMG genes involved in LUAD patients by integrating several high-throughput databases and tools including The Cancer Genome Atlas (TCGA), and Kaplan-Meier plotter database. These data demonstrated that PSMG3 and PSMG4 were expressed at significantly higher levels in neoplastic cells than in normal lung tissues. Notably, increased expressions of these proteins were correlated with poor prognoses of lung cancer patients, which probably confirmed their fundamental roles in the staging of LUAD tumors. Meanwhile, it was also indicated that there were positive correlations between PSMG family genes and the immune response, metabolism of ubiquinone, cell cycle regulatory pathways, and heat shock protein 90 (HSP90)/phosphatidylinositol 3-kinase (PI3K)/Wnt signaling. Experimental data also confirmed that the knockdown of PSMG4 in LUAD cell lines decreased cell proliferation and influenced expressions of downstream molecules. Collectively, this study revealed that PSMG family members are novel prognostic biomarkers for LUAD progression, which also provide new therapeutic targets of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , Fosfatidilinositol 3-Quinases , Adenocarcinoma de Pulmão/genética , Chaperonas Moleculares , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica
9.
Am J Transl Res ; 15(12): 6701-6717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186977

RESUMO

OBJECTIVE: Ribonuclease P RNA component H1 (RPPH1) is a long non-coding RNA (lncRNA) associated with cancer progression. Higher RPPH1 expression in breast and cervical cancer samples than that in normal tissues were observed through the lncRNASNP2 database; therefore, silencing RPPH1 expression might be a potential strategy for cancer treatments, even though RPPH1 is also an RNA subunit of ribonuclease P involved in processing transfer RNA (tRNA) precursors and the effect of RPPH1 knockdown is not yet fully understood. METHODS: Differentially expressed genes (DEGs) were identified through RNA sequencing in each shRNA-transfected RPPH1 knockdown MDA-MB-231, RPPH1 knockdown HeLa cell, and respective control cells, then the gene ontology enrichment analysis was performed by IPA and MetaCore database according to these DEGs, with further in vitro experiments validating the effect of RPPH1 silencing in MDA-MB-231 and HeLa cells. RESULTS: Hundreds of down-regulated DEGs were identified in RPPH1 knockdown MDA-MB-231 and HeLa cells while bioinformatics analysis revealed that these genes were involved in pathways related to immune response and cancerogenesis. Compared to mock- and vector-transfected cells, the production of mature tRNAs, cell proliferation and migration capacity were inhibited in RPPH1-silenced HeLa and MDA-MB-231 cells. Additionally, RPPH1 knockdown promoted G1 cell cycle arrest mainly through the down-regulation of cyclin D1, although glycolytic pathways were only affected in RPPH1 knockdown HeLa cells but not MDA-MB-231 cells. CONCLUSION: This study demonstrated that knockdown RPPH1 affected tRNA production, cell proliferation and metabolism. Our findings might provide insight into the role of RPPH1 in tumor development.

10.
Aging (Albany NY) ; 14(20): 8498-8567, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315446

RESUMO

Breast cancer is one of the leading deaths in all kinds of malignancies; therefore, it is important for early detection. At the primary tumor site, tumor cells could take on mesenchymal properties, termed the epithelial-to-mesenchymal transition (EMT). This process is partly regulated by members of the cadherin (CDH) family of genes, and it is an essential step in the formation of metastases. There has been a lot of study of the roles of some of the CDH family genes in cancer; however, a holistic approach examining the roles of distinct CDH family genes in the development of breast cancer remains largely unexplored. In the present study, we used a bioinformatics approach to examine expression profiles of CDH family genes using the Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), cBioPortal, MetaCore, and Tumor IMmune Estimation Resource (TIMER) platforms. We revealed that CDH1/2/4/11/12/13 messenger (m)RNA levels are overexpressed in breast cancer cells compared to normal cells and were correlated with poor prognoses in breast cancer patients' distant metastasis-free survival. An enrichment analysis showed that high expressions of CDH1/2/4/11/12/13 were significantly correlated with cell adhesion, the extracellular matrix remodeling process, the EMT, WNT/beta-catenin, and interleukin-mediated immune responses. Collectively, CDH1/2/4/11/12/13 are thought to be potential biomarkers for breast cancer progression and metastasis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética
11.
Clin Cancer Res ; 28(23): 5058-5065, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129471

RESUMO

PURPOSE: Satisfactory treatment options for advanced leiomyosarcoma and liposarcoma are limited. The LEADER study (NCT03526679) investigated the safety and efficacy of lenvatinib plus eribulin. METHODS: LEADER is a multicenter phase Ib/II study for advanced leiomyosarcoma or liposarcoma. The phase Ib part enrolled 6 patients to determine the dose-limiting toxicity (DLT) and recommended phase II dose (RP2D) with the starting dose of lenvatinib 18 mg/day and eribulin 1.1 mg/m2 D1, D8 every 21 days. The primary endpoint of the phase II part was objective response rate (ORR) based on Response Evaluation Criteria in Solid Tumors 1.1, with phase Ib patients preplanned to be included in the efficacy analysis. Translational analyses were based on the transcriptomic data obtained from the NanoString nCounter platform. RESULTS: Thirty patients were enrolled (leiomyosarcoma 21, liposarcoma 9); the median age was 59. One patient had to temporarily stop lenvatinib due to grade 2 arthritis in the first cycle, meeting DLT criteria. Four of 6 patients had to decrease the dose of lenvatinib to 14 mg between cycles two and three. RP2D was determined at lenvatinib 14 mg/day and eribulin 1.1 mg/m2. The confirmed ORR was 20%, and the ORR was not significantly different between phase Ib/II cohorts (P = 0.23). The median progression-free survival was 8.56 months (95% confidence interval, 4.40-not reached). Translational studies suggested increased dendritic cells in the tumor microenvironment (TME) after treatment. CONCLUSIONS: Lenvatinib plus eribulin has a manageable safety profile and exhibits promising efficacy for treating advanced leiomyosarcoma and liposarcoma.


Assuntos
Leiomiossarcoma , Lipossarcoma , Humanos , Pessoa de Meia-Idade , Cetonas/efeitos adversos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Microambiente Tumoral
12.
J Immunol Res ; 2022: 3883822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093436

RESUMO

Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine development for monkeypox in the future.


Assuntos
Mpox , Varíola , Animais , Progressão da Doença , Células HeLa , Humanos , Macaca mulatta , Mpox/patologia , Monkeypox virus/genética , Transcriptoma
13.
J Med Chem ; 65(15): 10393-10407, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877176

RESUMO

A novel theranostic co-prodrug SCB has been designed by combining a co-prodrug from CDDO-Me and SAHA with a biotin-coupled near-infrared (NIR) probe hemicyanine via redox-responsive linker thiolactate to enhance the tumor theranostic efficacy and reduce the toxic side effects using both active and passive targeting strategies. SCB displayed reactive oxygen species (ROS)- and glutathione (GSH)-dependent release of NIR fluorescence and two parent drugs. Furthermore, the administration of SCB caused selective illumination of the tumor tissues for >24 h, thereby guiding precise removal of a tumor from intraoperative mice. Importantly, SCB exhibited highly efficient tumor inhibition, exerted selective combination therapy through prodrug mode, and minimized the adverse effects. Finally, SCB induced mitochondrial depolarization, DNA damage, and cell apoptosis through ROS generation and downregulation of HDAC6 protein, as verified by H2AX, Bax, cleaved-PARP, and Mcl-1 proteins. Thus, we suggest that SCB can provide a new platform for both precise diagnosis-guided tumor removal and selective combination therapy with high safety.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Quimioterapia Combinada , Glutationa/metabolismo , Camundongos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Oxirredução , Medicina de Precisão , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio , Nanomedicina Teranóstica
14.
Theranostics ; 12(6): 2535-2548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401826

RESUMO

Rationale: Precise diagnosis and effective therapy of the tumor microenvironment (TME) remains a challenge. Fluorescence tracers for monitoring primary tumors are currently reported; however, they face challenges in accurately delineating tumors in real-time during surgery, including interference from the background and insufficient accumulation of imaging reagents at tumor sites. Additionally, although the natural product podophyllotoxin (PPT) had potent and broad anti-tumor activity, the poor tumor target specificity and high toxicity of PPT extremely limited its clinical application. Methods: In the current study, a novel theranostic agent PBB was designed and synthesized by coupling the natural chemotherapeutic drug PPT with a near-infrared (NIR) fluorescence probe hemicyanine (CyOH) via redox-responsive thiolactate linker and introducing biotin to CyOH to enhance the active target ability. The activation mechanism of PBB was characterized by absorption spectra, fluorescence spectra, and HPLC. Subsequently, we investigated its imaging action, anti-tumor activity, and toxicity in vitro and in vivo. Results:In vitro experiments, PBB was verified to possess a ROS/GSH-responsive molecular switch, impelling PBB to release a fluorescent fragment and active drug PPT and selectively lighting up tumor cells but not the normal cells. As such, PBB was demonstrated to selectively inhibit the growth of tumor cells by inducing intracellular accumulation of ROS and MMP depolarization. More importantly, PBB significantly suppressed hepatic tumor growth and minimized the adverse effects caused by PPT, including acute toxicity and impaired liver function. Finally, the NIR fluorescence accumulated in the tumor tissue and stayed continuous for over 24h, and PBB provided precise visualization and highly selective fluorescence diagnosis to guide tumor resection. Conclusions: Therefore, the multilevel targeting theranostic agent provided a novel tool for precise diagnosis, real-time monitoring, and efficient tumor chemotherapy with high safety.


Assuntos
Nanopartículas , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
15.
Chin J Physiol ; 65(2): 93-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35488675

RESUMO

Prostaglandin F2 receptor inhibitor (PTGFRN) promotes neoplastic cell migration and metastasis in some human cancers. However, the role of PTGFRN in human gliomas is still undetermined. First of all, PTGFRN messenger ribonucleic acid (mRNA) overexpression correlated with some poor prognostic factors of glioma after analyzing The Cancer Genome Atlas and Chinese Glioma Genome Atlas database. In order to detect the effect of PTGFRN expression on tumor characteristics of gliomas, U87MG, LN229, and glioblastoma 8401 glioma cell lines were cultured and prepared for western blot analysis and real-time polymerase chain reaction, respectively. The results revealed the overexpression of PTGFRN in all glioma cell lines as compared to normal brain cells. In addition, PTGFRN immunohistochemical (IHC) staining was performed on two sets of glioma tissue microarrays. Consistent with the results of in vitro studies, cytoplasmic PTGFRN immunostaining scores positively correlated with tumor grades and poor prognosis of gliomas. Therefore, PTGFRN IHC staining may be useful for the evaluation of tumor grades and overall survival time to facilitate the tailoring of appropriate treatment strategy. PTGFRN may serve as a potential pharmacologic target for the suppression of gliomagenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Prognóstico , Receptores de Prostaglandina
16.
Eur J Med Chem ; 233: 114232, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247756

RESUMO

Bruton's tyrosine kinase (BTK) is a promising target in the treatment of various cancers. Despite the early success of BTK inhibitors in the clinic, these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of anticancer drugs. In this review, we highlight the scientific background and theoretical basis for developing BTK-based dual inhibitors, as well as the status of these agents in preclinical and clinical studies, and discuss further options in this field. We posit that these advances in BTK-based dual inhibitors confirm their feasibility for the treatment of refractory tumors, including those with drug resistance, and provide a framework for future drug design in this field. Accordingly, we anticipate increasingly rapid progress in the development of novel potent dual inhibitors and advanced clinical research on BTK-based dual inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Tirosina Quinase da Agamaglobulinemia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056740

RESUMO

Theranostic agents for concurrent cancer therapy and diagnosis have begun attracting attention as a promising modality. However, accurate imaging and identification remains a great challenge for theranostic agents. Here, we designed and synthesized a novel theranostic agent H6M based on the "double-locked" strategy by introducing an electron-withdrawing nitro group into 1-position of a pH-responsive 3-amino-ß-carboline and further covalently linking the hydroxamic acid group, a zinc-binding group (ZBG), to the 3-position of ß-carboline to obtain histone deacetylase (HDAC) inhibitory effect for combined HDAC-targeted therapy. We found that H6M can be specifically reduced under overexpressed nitroreductase (NTR) to produce H6AQ, which emits bright fluorescence at low pH. Notably, H6M demonstrated a selective fluorescence imaging via successive reactions with NTR (first "key") and pH (second "key"), and precisely identified tumor margins with a high S/N ratio to guide tumor resection. Finally, H6M exerted robust HDAC1/cancer cell inhibitory activities compared with a known HDAC inhibitor SAHA. Therefore, the NTR/pH-activated theranostic agent provided a novel tool for precise diagnosis and efficient tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Medicina de Precisão/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/cirurgia , Neoplasias Experimentais/terapia , Nitrorredutases/metabolismo , Ratos , Espectrometria de Fluorescência , Cirurgia Assistida por Computador , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Nat Prod ; 84(12): 3161-3168, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34806369

RESUMO

The natural products piperlongumine (1) and ligustrazine (2) have been reported to exert antiproliferative effects against various types of cancer cells by up-regulating the level of reactive oxidative species (ROS). However, the moderate activities of 1 and 2 limit their application. To improve their potential antitumor activity, novel piperlongumine/ligustrazine derivatives were designed and prepared, and their potential pharmacological effects were determined in vitro and in vivo. Among the derivatives obtained, 11 exerted more prominent inhibitory activities against proliferation of drug-sensitive/-resistant cancer cells with lower IC50 values than 1. Particularly, the IC50 value of 11 against drug-resistant Bel-7402/5-FU cells was 0.9 µM, which was about 9-fold better than that of 1 (IC50 value of 8.4 µM). Mechanistic studies showed that 11 demonstrated thioredoxin reductase (TrxR) inhibitory activity, increase of ROS levels, decrease of mitochondrial transmembrane potential levels, and occurrence of DNA damage and autophagy, in a dose-dependent manner, via regulation of DNA damage protein H2AX and autophagy-associated proteins LC3, beclin-1, and p62 in drug-resistant Bel-7402/5-FU cells. Finally, compound 11 at 5 mg/kg displayed potent antitumor activity in vivo with tumor suppression of 76% (w/w). Taken together, compound 11 may represent a promising candidate drug for the chemotherapy of drug-resistant hepatocellular carcinoma and warrant more intensive study.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Dioxolanos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Pirazinas/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Carcinoma Hepatocelular/patologia , Dioxolanos/química , Humanos , Neoplasias Hepáticas/patologia , Pirazinas/química
19.
ACS Appl Mater Interfaces ; 13(45): 53574-53585, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34729975

RESUMO

Chemodynamic therapy (CDT) based on the intracellular Fenton reaction has become increasingly explored in cancer treatment. However, the mildly acidic tumor microenvironment and the limited amount of intracellular hydrogen peroxide (H2O2) will create issues for CDT to perform a sustained and high-efficiency treatment. Therefore, how to selectively reduce the pH value and augment the amount of H2O2 in tumor tissues has become the key factor for realizing excellent CDT. Besides, the majority of the reported CDT systems have been constructed from iron-based inorganic or metal-organic framework nanomaterials due to the decisive role of metals in CDT, which restricts the development of CDT. In this study, inspired by the host-guest interactions between pillar[6]arene and ferrocene, a ternary pillar[6]arene-based supramolecular nanocatalyst (GOx@T-NPs) for CDT is reported for the first time. GOx@T-NPs not only exhibited a high-efficiency catalytic ability to convert glucose into hydroxyl radicals (•OH) and to reduce the pH value inside cancer cells for significant enhancement of the CDT effect, but they also showed sensitive glutathione-induced camptothecin (CPT) prodrug release capacity for further improving the efficiency of CDT. Hence, GOx@NPs possessed excellent ability to synergistically enhance the CDT. Additionally, an antitumor mechanism study showed that the prominent tumor inhibition capacity of GOx@T-NPs was derived from trimodal synergistic interactions of CDT, starvation therapy, and chemotherapy. Moreover, GOx@T-NPs manifested good biocompatibility and tumor selectivity with few side effects in major organs. This work broadens the range of materials available for CDT and demonstrates new developments in pillar[n]arene-based multimodal synergistic treatment systems.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Compostos de Amônio Quaternário/química , Animais , Antineoplásicos/farmacologia , Catálise , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/química , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Metalocenos/química , Metalocenos/farmacologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tamanho da Partícula , Terapia Fototérmica , Compostos de Amônio Quaternário/farmacologia
20.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641443

RESUMO

Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo-chemodynamic combination therapy were constructed via host-guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles-and, thus, improving the BA recovery and release capability in tumors-but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).


Assuntos
Neoplasias da Mama/tratamento farmacológico , Glutationa/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Pró-Fármacos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Células Tumorais Cultivadas , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA