Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37893621

RESUMO

Melanoidins (MLDs) are formed through the reaction of carbonyl compounds and amino compounds in the Maillard reaction (MR) during the heating or storage of food. In this study, the formation, chemical composition, and structural characteristics of black garlic (BG) MLDs stored at different temperatures (4 °C, 20 °C, and 35 °C) over a period of 6 months were investigated. The initial products of the MR formed more often at 4 °C and 20 °C, while higher temperatures (35 °C) promoted the reaction in the middle and late stages of the MR. The higher temperature promoted an increase in molecular weight and MLD content, which can be attributed to the increase in protein and phenolic content. Elemental analysis confirmed an increase in nitrogen (N) content and the continuous incorporation of nitrogen-rich substances into the skeleton. Amino acids, particularly aspartic acid and threonine, were the primary N-containing compounds involved in MLD formation. Additionally, the infrared analysis revealed that the changes in MLDs during storage were characterized by amide I and amide II groups. The MR enhanced the yields of heterocyclic compounds (from 56.60% to 78.89%), especially that of O-heterocyclic compounds, at the higher temperature according to Py-GC-MS analysis. Furthermore, the higher temperature enhanced the molecular weight, maximum height, and roughness of MLDs compared to the control. The antioxidant ability of MLDs was positively correlated with storage temperatures. In summary, temperature had an impact on the formation, evolution, and antioxidant activity of MLDs.

2.
Front Immunol ; 14: 1238774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744382

RESUMO

Background: Postoperative systemic inflammatory dysregulation (PSID) is characterised by strongly interlinked immune and metabolic abnormalities. However, the hub genes responsible for the interconnections between these two systemic alterations remain to be identified. Methods: We analysed differentially expressed genes (DEGs) of individual peripheral blood nucleated cells in patients with PSID (n = 21, CRP > 250 mg/L) and control patients (n = 25, CRP < 75 mg/L) following major abdominal surgery, along with their biological functions. Correlation analyses were conducted to explore the interconnections of immune-related DEGs (irDEGs) and metabolism-related DEGs (mrDEGs). Two methods were used to screen hub genes for irDEGs and mrDEGs: we screened for hub genes among DEGs via 12 algorithms using CytoHubba in Cytoscape, and also screened for hub immune-related and metabolic-related genes using weighted gene co-expression network analysis. The hub genes selected were involved in the interaction between changes in immunity and metabolism in PSID. Finally, we validated our results in mice with PSID to confirm the findings. Results: We identified 512 upregulated and 254 downregulated DEGs in patients with PSID compared with controls. Gene enrichment analysis revealed that DEGs were significantly associated with immune- and metabolism-related biological processes and pathways. Correlation analyses revealed a close association between irDEGs and mrDEGs. Fourteen unique hub genes were identified via 12 screening algorithms using CytoHubba in Cytoscape and via weighted gene co-expression network analysis. Among these, CD28, CD40LG, MAPK14, and S100A12 were identified as hub genes among both immune- and metabolism-related genes; these genes play a critical role in the interaction between alterations in immunity and metabolism in PSID. The experimental results also showed that the expression of these genes was significantly altered in PSID mice. Conclusion: This study identified hub genes associated with immune and metabolic alterations in patients with PSID and hub genes that link these alterations. These findings provide novel insights into the mechanisms underlying immune and metabolic interactions and new targets for clinical treatment can be proposed on this basis.


Assuntos
Algoritmos , Antígenos CD28 , Humanos , Animais , Camundongos , Ligante de CD40 , Perfilação da Expressão Gênica , Período Pós-Operatório
3.
Food Res Int ; 157: 111416, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761662

RESUMO

Lactic acid bacteria fermentation is a commonly applied technique to produce nutritional, functional, and organoleptic enhanced foods. In the present study, protein hydrolysis and Lactobacillus plantarum fermentation were coupled to develop quinoa beverages. Protein hydrolysis effectively promoted the growth and fermentation of L. plantarum. Fermentation alone did not significantly improve antioxidant activity, but the combined use of protein hydrolysis and L. plantarum fermentation significantly improved the antioxidant activity of the quinoa beverage. Nontargeted metabolomics based on UHPLC-Q Exactive HF-X/MS and multivariate statistical analysis were performed to reveal the metabolite profile alterations of the quinoa beverage by different processing methods. A total of 756 metabolites were identified and annotated, which could be categorized into 12 different classes. The significant differentially abundant metabolites were mainly involved in primary metabolite metabolism and secondary metabolite biosynthesis. Many of these metabolites were proven to be vitally important to the function and taste formation of the quinoa beverage. Most importantly, the coupled use of protein hydrolysis and L. plantarum fermentation significantly increased some functional ingredients compared with protein hydrolysis and L. plantarum fermentation alone. The above results indicate that protein hydrolysis coupled with L. plantarum fermentation is an effective strategy to develop functional quinoa beverages.


Assuntos
Chenopodium quinoa , Lactobacillus plantarum , Antioxidantes/análise , Bebidas , Chenopodium quinoa/metabolismo , Fermentação , Hidrólise , Lactobacillus plantarum/metabolismo , Metabolômica
4.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627080

RESUMO

Essential oils (EOs) have excellent antibacterial activity and are generally recognized as safe (GRAS) for use in food preservatives. However, the application of EOs is limited because of their strong volatility and easily oxidized. Encapsulation of EOs into nanoemulsions could effectively prevent oxidative deterioration. In this study, lemon essential oil-based nanoemulsion (LEO/NE) was prepared by high-pressure homogenization. FT-IR and encapsulation efficiency analysis indicated that LEO was effectively encapsulated in the nanoemulsion. The results of zeta potential changes after 35 d storage indicated that LEO/NE exhibits good stability at room temperature. The effect of LEO/NE on the main soft rot pathogens of kiwifruit Phomopsis sp. was investigated, and the results showed that LEO/NE significantly inhibited spore germination and mycelia growth of Phomopsis sp. by promoting ROS accumulation, intracellular antioxidant enzyme activities, and cell apoptosis. The preservation experiment was carried out by inoculating Phomopsis sp. spores into fresh kiwifruit, and the LEO/NE effectively inhibited soft rot development in kiwifruit in a LEO dose dependent manner. LEO/NE with 1% LEO loading amount has a good effect on preventing postharvest decay of kiwifruit caused by Phomopsis sp.

5.
J Sci Food Agric ; 102(10): 4035-4045, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34997590

RESUMO

BACKGROUND: Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS: In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION: The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.


Assuntos
Produtos da Carne , Óleos Voláteis , Zanthoxylum , Cápsulas , China , Óleos Voláteis/química , Zanthoxylum/química
6.
Carbohydr Polym ; 279: 119002, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980350

RESUMO

Ferulic acid (FA) is an effective chemopreventive and therapeutic agent for colorectal cancer. However, FA cannot stably reach the colon through human digestive system, and it can be grafted into oligosaccharides to improve its digestion stability. Therefore, in this study, different degrees of substitution of feruloylated oat ß-glucan (FA-OßG) were prepared by grafting FA onto water soluble oat ß-glucan. FA grafting changed the crystallinity and surface morphology of OßG, and the thermal stability of the FA-OßG improved. As the DS increased, the antioxidant activity of FA-OßG increased, and FA-OßG III with DS of 0.184 showed the same antioxidant activities compared to the equal amount of free FA. The FA-OßG showed higher stability under gastrointestinal and colonic conditions than free FA. Furthermore, the FA-OßG conjugates exhibited good in vitro anticancer activity against human colorectal cancer cells, while FA-OßG III showed better anticancer activity than an equal amount of free FA.


Assuntos
Antineoplásicos Fitogênicos , Antioxidantes , Ácidos Cumáricos , beta-Glucanas , Adulto , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Fezes , Feminino , Fermentação , Suco Gástrico/química , Células HCT116 , Humanos , Secreções Intestinais/química , Masculino , Picratos/química , Ácidos Sulfônicos/química , Propriedades de Superfície , Adulto Jovem , beta-Glucanas/química , beta-Glucanas/farmacologia
7.
Life Sci ; 272: 119119, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508296

RESUMO

AIMS: Acute kidney injury (AKI) is a severe complication of autologous orthotopic liver transplantation (AOLT). Apoptosis has been shown to be involved in renal ischemia/reperfusion, and the PI3K/AKT signaling pathway is involved in numerous cell processes, including promoting cell survival and inhibiting apoptosis. We aimed to verify whether the PI3K/AKT signaling pathway participates in the development of post-AOLT AKI. METHODS: Male Sprague-Dawley rats underwent AOLT with or without treatment with insulin-like growth factor-1 (IGF-1, a PI3K/AKT activator) and LY294002 (a PI3K/AKT inhibitor; n = 8/group). NRK-52E cells (rat renal tubular epithelial cell line) were subjected to hypoxia-re-oxygenation to mimic renal cell I/R injury in vitro, and confirm whether silencing information regulator 1 (SIRT1) mediated the protective effects of PI3K/AKT by deacetylating forkhead protein O3a (FoxO3a). KEY FINDINGS: During the reperfusion stage, kidney injury peaked at 8 h after reperfusion, then gradually recovered, which was consistent with the dynamic changes in apoptosis and the protein expressions of Bcl-2 interacting mediator of cell death (Bim), Fas ligand (FasL), and nuclear FoxO3a AKT phosphorylation and nuclear SIRT1 protein expression were also upregulated. IGF-1 application decreased Bim, FasL, and nuclear FoxO3a protein expressions, and protected against apoptosis and AKI. In NRK-52E cells, IGF-1 upregulated nuclear SIRT1 expression, reduced FoxO3a acetylation, downregulated Bim and FasL protein expressions, and attenuated apoptosis and AKI; these effects were reversed by SIRT1 blocking. CONCLUSION: The activation of the PI3K/AKT signaling pathway not only induced FoxO3a nuclear export but also deacetylation through upregulating nuclear SIRT1 expression to attenuate post-AOLT AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Forkhead Box O3/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , China , Proteína Forkhead Box O3/fisiologia , Transplante de Fígado/efeitos adversos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L266-L275, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174448

RESUMO

Postoperative pulmonary complications including acute lung injury (ALI) and acute respiratory distress syndrome have contributed to mortality and morbidity of orthotopic liver transplantation (OLT) with unclear mechanisms. Mast cells (MCs) and polymorphonuclear neutrophils (PMNs) are the main inflammatory cells and participants in the process of ALI. The present study was designed to investigate the role of MCs and PMNs and their potential relation to ALI following OLT. Rat orthotopic autologous liver transplantation (OALT) model was designed to determine lung injury at different time points after liver reperfusion. We also evaluated the function of MCs and the effect of tumor necrosis factor-α (TNF-α) and tryptase on ALI and PMN apoptosis in rats subjected to OALT. Histological scores and inflammatory factor levels as well as PMN apoptosis were measured. Rats suffered from ALI after OALT, which was demonstrated by a collapse of the pulmonary architecture, pulmonary edema, and infiltration of inflammatory cells in alveolar and interstitial spaces, as well as increased levels of proinflammatory cytokines. ALI maximized at 8 h after OALT. However, PMN apoptosis lagged behind the pulmonary injury and maximized at 16 h after OALT, when the acute inflammation resolution initiated. MC stabilization, and tryptase and TNF-α inhibitors could significantly decrease the lung pathophysiologic scores accompanied by an increase in PMN apoptosis. ALI after OALT was associated with MC activation and PMN apoptosis. ALI progression might be affected by delayed PMN apoptosis, which was related to MC activation. Induction of PMN apoptosis might alleviate ALI after OALT.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Transplante de Fígado/efeitos adversos , Neutrófilos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Animais , Modelos Animais de Doenças , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
9.
Food Sci Nutr ; 8(7): 3912-3922, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724652

RESUMO

It is important to select an appropriate emulsifier to overcome the poor stability and dispersibility of the vegetable oils in food system. Previous studies suggest that OSA-modified konjac glucomannan (KGOS) has potential to be used as a food emulsifier. In this study, in vitro fermentation suggested that KGOS could promote the growth of the important intestinal probiotics Lactobacillus and Bifidobacterium and then promote intestinal fermentation to produce gas and short chain fatty acids. The emulsification experiments indicated that KGOS had good emulsification ability and stability for camellia oil. Under 40 MPa for 90 s homogenization, 0.2% (w/w) KGOS could encapsulate 20% (w/w) camellia oil. The nanoemulsion was stable at a low pH and high concentration of NaCl and ethanol. Konjac glucomannan octenyl succinate encapsulation could prevent the oxidation of camellia oil at 25°C and storage for 30 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA