Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
J Hepatol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670321

RESUMO

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of nonalcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. This study investigates the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in NASH pathogenesis. METHODS: Hepatic EFHD2 expression was characterized in NASH patients and two diet-induced NASH mouse models. Single-cell RNA-sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma (HCC) were assessed. Molecular mechanisms underlying EFHD2 function were investigated, along with its potential as a therapeutic target by chemical and genetic means. RESULTS: EFHD2 expression was significantly elevated in liver tissue macrophages/monocytes in both NASH patients and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related HCC. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of interferon-γ receptor-2 (IFNγR2) onto the plasma membrane. This interaction mediates IFNγ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a developed stapled α-helical peptide targeting EFHD2 demonstrated its efficacy in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all NAFLD patients progress to NASH. A key challenge is identifying the factors triggering inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of IFNγ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings suggest EFHD2 as a promising target for drug development aimed at NASH treatment.

2.
Hum Cell ; 37(3): 593-606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538930

RESUMO

Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.


Assuntos
Neoplasias , Humanos , Estresse Mecânico , Neoplasias/genética , Neoplasias/patologia , Carcinogênese , Canais Iônicos/genética , Temperatura Baixa
3.
Anal Chem ; 96(4): 1733-1741, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227423

RESUMO

Exosomal miRNAs are considered promising biomarkers for cancer diagnosis, but their accuracy is severely compromised by the low content of miRNAs and the large amount of exosomal miRNAs released from normal cells. Here, we presented a dual-specific miRNA's logical recognition triggered by an entropy-driven catalysis (EDC)-enhanced system in exosomes for accurate detection of liver cancer-cell-derived exosomal miR-21 and miR-122. Taking advantage of the accurate analytical performance of the logic device, the excellent membrane penetration of gold nanoparticles, and the outstanding amplification ability of the EDC reaction, this method exhibits high sensitivity and selectivity for the detection of tumor-derived exosomal miRNAs in situ. Moreover, due to its excellent performance, this logic device can effectively distinguish liver cancer patients from healthy donors by determining the amount of cancer-cell-derived exosomal miRNAs. Overall, this strategy has great potential for analyzing various types of exosomes and provides a viable tool to improve the accuracy of cancer diagnosis.


Assuntos
Exossomos , Neoplasias Hepáticas , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/genética , Ouro , Entropia , Exossomos/genética , DNA , Neoplasias Hepáticas/diagnóstico , Lógica
4.
Anal Chim Acta ; 1287: 342085, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182380

RESUMO

BACKGROUND: Human telomerase is a ribonucleoprotein complex that includes proteins and human telomerase RNA (hTR). Emerging evidence suggested that the expression level of hTR was high related with the development of tumor, so it is important to accurately detect the content of hTR. Optical control of DNAzyme activity shows a promising strategy for precise biosensing, biomedical imaging and modulation of biological processes. Although DNAzyme-based sensors can be controlled spatiotemporally by light, its application in the detection of hTR in living cells is still rare. Therefore, designing DNAzyme activity spatiotemporal controllable sensors for hTR detection is highly needed. RESULTS: We developed a UV light-activated DNAzyme-based nanoprobe for spatially accurate imaging of intracellular hTR. The proposed nanoprobe was named MDPH, which composed of an 8-17 DNAzyme (D) inactivated by a protector strand (P), a substrate strand (H), and MnO2 nanosheets. The MnO2 nanosheets can enhance the cellular uptake of DNA strands, so that MDPH probe can enter cells autonomously through endocytosis. Under the high concentration of GSH in cancer cells, MnO2 nanosheets can self-generate cofactors to maintain the catalytic activity of DNAzyme. When exposing UV light and in presence of target hTR, DNAzyme could cleave substrate H, resulting in the recovery of fluorescence of the system. The cells imaging results show that MDPH probe could be spatiotemporally controlled to image endogenous hTR in cancer cells. SIGNIFICANCE: With this design, telomerase RNA-specific fluorescent imaging was achieved by MDPH probe in both cancer and normal cells. Our probe made a promising new platform for spatiotemporal controllable intracellular hTR monitoring. This current method can be applied to monitor a variety of other biomarkers in living cells and perform medical diagnosis, so it may has broad applications in the field of medicine.


Assuntos
DNA Catalítico , Telomerase , Humanos , Compostos de Manganês , Óxidos , Corantes
5.
Front Immunol ; 14: 1290885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016064

RESUMO

Pyroptosis, a novel form of programmed cell death (PCD) discovered after apoptosis and necrosis, is characterized by cell swelling, cytomembrane perforation and lysis, chromatin DNA fragmentation, and the release of intracellular proinflammatory contents, such as Interleukin (IL) 8, IL-1ß, ATP, IL-1α, and high mobility group box 1 (HMGB1). Our understanding of pyroptosis has increased over time with an increase in research on the subject: gasdermin-mediated lytic PCD usually, but not always, requires cleavage by caspases. Moreover, new evidence suggests that pyroptosis induction in tumor cells results in a strong inflammatory response and significant cancer regression, which has stimulated great interest among scientists for its potential application in clinical cancer therapy. It's worth noting that the side effects of chemotherapy and radiotherapy can be triggered by pyroptosis. Thus, the intelligent use of pyroptosis, the double-edged sword for tumors, will enable us to understand the genesis and development of cancers and provide potential methods to develop novel anticancer drugs based on pyroptosis. Hence, in this review, we systematically summarize the molecular mechanisms of pyroptosis and provide the latest available evidence supporting the antitumor properties of pyroptosis, and provide a summary of the various antitumor medicines targeting pyroptosis signaling pathways.


Assuntos
Neoplasias , Piroptose , Humanos , Apoptose , Caspases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico
6.
Phytomedicine ; 119: 154972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531903

RESUMO

BACKGROUND: As first-line clinical drugs, tripterygium glycoside tablets (TGTs) often have inconsistent efficacy and toxic side effects, mainly due to inadequate quality control. Therefore, clinically relevant quality standards for TGTs are urgently required. PURPOSE: Based on chemical substances and considering pharmacological efficacy, we aimed to develop an effective quality evaluation method for TGTs. METHODS: Representative commercial samples of TGTs were collected from different manufacturers, and qualitative UHPLC/LTQ-Orbitrap-MS and quantitative UHPLC-MS/MS analysis methods were successfully applied to evaluate their quality similarities and differences based on their chemical properties. Then the anti-immunity, anti-inflammatory and antitumor activities of TGTs and related monomers were evaluated using Jurkat, RAW264.7, MIA PaCa-2, and PANC-1 as cellular models. Subsequently, we predicted and verified small molecule-DCTPP1 interactions via molecular docking using the established DCTPP1 enzymatic activity assay. Finally, we performed a gray relational analysis to evaluate the chemical characteristics and biological effects of TGTs produced by different manufacturers. RESULTS: We collected 24 batches of TGTs (D01-D24) from 5 manufacturers (Co. A, Co. B, Co. C, Co. D, Co. E) for quality evaluation. The chemical composition analysis revealed significant differences in the substance bases of the samples. The D02, D18-D20 samples from Co. B constituted a separate group that differed from other samples, mainly in their absence of diterpenoids and triterpenoids, including triptolide, triptophenolide, and triptonide. In vitro anti-immunity, antitumor and anti-inflammatory tests using the same TGT concentration revealed that, except for D02, D18-D20, the remaining 20 samples exhibited different degrees of anti-immunity, antitumor and anti-inflammatory activity. Our experiments verified that triptolide, triptophenolide, and triptonide were all DCTPP1 inhibitors, and that TGTs generally exhibited DCTPP1 enzyme inhibitory activity. Moreover, the inhibitory activity of D02, D18-D20 samples from Co. B was much lower than that of the other samples, with a nearly tenfold difference in IC50. Further comprehensive analysis revealed a high correlation between DCTPP1 enzyme inhibition activity and the anti-immunity and antitumor and anti-inflammatory activities of these samples. CONCLUSION: The established DCTPP1 enzymatic activity assay proved suitable for quantitative pharmacological and pharmaceutical analysis to complement the existing quality control system for TGTs and to evaluate their effectiveness.


Assuntos
Glicosídeos Cardíacos , Medicamentos de Ervas Chinesas , Glicosídeos/farmacologia , Glicosídeos/análise , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Tripterygium/química , Simulação de Acoplamento Molecular , Comprimidos/química , Biomarcadores
7.
Drug Dev Res ; 84(6): 1325-1334, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421203

RESUMO

Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética
8.
Nat Commun ; 14(1): 4274, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460463

RESUMO

The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis. The proteomic and phosphoproteomic analysis further highlights the responsibility of mTOR signaling for non-response to Sunitinib. Immune landscape characterization reveals diverse tumor microenvironment subsets in ccRCC. Finally, we construct a multi-omics classifier that can detect responder and non-responder patients (receiver operating characteristic-area under the curve, 0.98). Our study highlights associations between ccRCC molecular characteristics and the response to TKI, which can facilitate future improvement of therapeutic responses.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Sunitinibe/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteômica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/genética , Microambiente Tumoral
9.
Int J Hyperthermia ; 40(1): 2223369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37344382

RESUMO

PURPOSE: To investigate the feasibility of percutaneous intrauterine instillation of chilled saline to protect the endometrium during microwave ablation (MWA) treating types 1-3 uterine fibroids. MATERIALS AND METHODS: Twenty-six patients with types 1-3 uterine fibroids were prospectively enrolled in an intrauterine saline instillation group (study group). The same number of patients with types 1-3 uterine fibroids who previously received MWA without endometrial protection were retrospectively included in a control group. Endometrial impairment was evaluated by hysteroscopy and magnetic resonance imaging (MRI). RESULTS: In the study group, hysteroscopy revealed an intact endometrium in 17 patients, congestion and reddening of the endometrium due to heat in 8 patients, and a burnt necrosis with a size < 1 cm on the functional layer of the endometrium in 1 patient. On MRI, in the study group, there were 17 (65.4%), 6 (23.1%), and 3 (11.5%) patients with grades 0, 1, and 2 endometrial impairment, respectively, but no grade 3 endometrial impairment. In the control group, there were 8 (30.8%), 8 (30.8%), 7 (26.9%), and 3 (11.5%) patients with grades 0, 1, 2, and 3 endometrial impairment, respectively. Endometrial impairment in the study group was significantly better than that in the control group (p = 0.006). One patient had puncture tunnel bleeding and no other complications occurred in the study group. CONCLUSION: Intraoperative percutaneous intrauterine instillation of chilled saline may be effective and safe in reducing the thermal damage to the endometrium caused by MWA for treating types 1-3 uterine fibroids.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Gravidez , Humanos , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Endométrio/diagnóstico por imagem , Endométrio/cirurgia , Endométrio/patologia , Leiomioma/diagnóstico por imagem , Leiomioma/cirurgia , Leiomioma/complicações , Histeroscopia , Neoplasias Uterinas/cirurgia
10.
Int J Surg ; 109(6): 1699-1707, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165977

RESUMO

BACKGROUND: The outcomes after septal myectomy in young children and infants with hypertrophic obstructive cardiomyopathy (HOCM) are not clear. The study sought to report the outcomes after septal myectomy in young children and infants and identify the mechanisms of residual or recurrent obstruction after surgery. METHODS: The authors performed an observational cohort study of children and infants under the age of 14 who underwent septal myectomy for HCOM from January 2013 to December 2020. Mean follow-up among 94.3% ( n =50) of hospital survivors was 42.09±24.38 months. RESULTS: In total, 56 children and infants [mean (SD) age, 5.38 (3.78) years; 29 (58.1%) were male] underwent septal myectomy for HOCM. Cumulative survival was 100, 96.6, 93.0, and 81.4% at 1, 3, 5, and 7 years, respectively, among hospital survivors. The incidence of residual and recurrent obstruction was 14.3% (8/56) and 13.0% (6/46), respectively. The mechanisms of residual obstruction were identified as subaortic obstruction caused by inadequacy of previous septal excision in two patients, midventricular obstruction caused by inadequacy of septal excision in five patients, and untreated abnormal papillary muscles in one patient. Recurrent obstruction was caused by isolated midventricular obstruction ( n =4) and newly emerged systolic anterior motion (SAM)-related subaortic obstruction combining abnormal mitral valve apparatus ( n =2). Residual or recurrent obstruction was associated with age less than 2 years at surgery (OR=6.157, 95% CI: 1.487-25.487, P =0.012) and biventricular outflow obstruction (OR=6.139, 95% CI: 1.292-29.172, P =0.022). Recurrent obstruction was associated with age less than 2 years at surgery (OR=6.976, 95% CI: 1.233-39.466, P =0.028). CONCLUSIONS: Septal myectomy is still effective and safe in young children and infants. The rate of residual or recurrent obstruction with diverse causes is relatively high, which is more likely to occur in children aged less than 2 years at surgery and those with biventricular obstruction.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiomiopatia Hipertrófica , Humanos , Masculino , Criança , Lactente , Pré-Escolar , Feminino , Estudos de Coortes , Resultado do Tratamento , Septos Cardíacos/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiomiopatia Hipertrófica/cirurgia , Cardiomiopatia Hipertrófica/complicações
11.
ACS Nano ; 17(8): 7584-7594, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37026681

RESUMO

Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.

12.
Biochem Pharmacol ; 210: 115497, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907496

RESUMO

Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFß-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.


Assuntos
Células Estreladas do Fígado , Proteínas Nucleares , Humanos , Camundongos , Animais , Proteínas Nucleares/metabolismo , Células Estreladas do Fígado/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
14.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288617

RESUMO

AIMS: Atrial structural and electrical remodelling is a major reason for the initiation and perpetuation of atrial fibrillation (AF). Ubiquitin-specific protease 38 (USP38) is a deubiquitinating enzyme, but its function in the heart remains unknown. The aim of this study was to investigate the effect of USP38 in pressure overload-induced AF. METHODS AND RESULTS: Cardiac-specific knockout USP38 and cardiac-specific transgenic USP38 mice and their corresponding control mice were used in this study. After 4 weeks with or without aortic banding (AB) surgery, atrial echocardiography, atrial histology, electrophysiological study, and molecular analysis were assessed. Ubiquitin-specific protease 38 knockout mice showed a remarkable improvement in vulnerability to AF, atrial weight and diameter, atrial fibrosis, and calcium-handling protein expression after AB surgery. Conversely, USP38 overexpression further increased susceptibility to AF by exacerbating atrial structural and electrical remodelling. Mechanistically, USP38 interacted with and deubiquitinated nuclear factor-kappa B (NF-κB), and USP38 overexpression increased the level of p-NF-κB in vivo and in vitro, accompanied by the upregulation of NOD-like receptor protein 3 (NLRP3) and inflammatory cytokines, suggesting that USP38 contributes to adverse effects by driving NF-κB/NLRP3-mediated inflammatory responses. CONCLUSION: Overall, our study indicates that USP38 promotes pressure overload-induced AF through targeting NF-κB/NLRP3-mediated inflammatory responses.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Proteases Específicas de Ubiquitina , Animais , Camundongos , Fibrilação Atrial/metabolismo , Átrios do Coração , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
15.
Nat Commun ; 13(1): 7494, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470859

RESUMO

Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Microftalmia , Proteogenômica , Humanos , Carcinoma de Células Renais/patologia , Fatores de Transcrição/genética , Microftalmia/genética , Proteômica , Neoplasias Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética
16.
Anal Chem ; 94(49): 17232-17239, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36441908

RESUMO

Taking advantage of the remarkable processivity and membrane penetrability, the gold nanoparticle (AuNP)-based three-dimensional (3D) DNA walking nanomachine has induced tremendous promise in molecular diagnostics and cancer therapy, whereas the executive ability of this nanomachine was eventually limited because of the disordered assembly between the walker and the track. Therefore, we developed a well-directed 3D DNA walking nanomachine by employing a DNA dendrimer as the track for intracellular imaging with high directionality and controllability. The nanomachine was constructed on a DNA dendrimer decorated with a substrate strand serving as the DNA track and a DNAzyme restrained by a locking strand as the walker. In this system, the distribution of the substrate strand and DNAzyme on the DNA dendrimer could be precisely regulated to achieve expected goals because of the specificity and predictability of the Watson-Crick base pairing, paving an explicit route for each walker to move along the track. Moreover, such a DNA dendrimer-based nanomachine owned prominent stability and anti-interference ability. By choosing microRNA-21 as a model analyte, the nanomachine was applied for the imaging of microRNA-21 in different cell lines and the monitoring of the dynamic microRNA-21 expression level in cancer cells. Therefore, we believe that this directed DNA walking nanomachine will have a variety of applications in molecular diagnostics and biological function modulation.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , Ouro/química , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA/química , DNA Catalítico/química , Limite de Detecção
17.
World J Clin Cases ; 10(18): 6168-6174, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949830

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive metabolic disease caused by mutations in CYP27A1. It has a low incidence rate, insidious onset, and diverse clinical manifestations. It can be easily misdiagnosed and can go unrecognized by clinicians, leading to delayed treatment and worsened patient outcomes. CASE SUMMARY: A 38-year-old male was admitted to our hospital with a history of unabating unstable posture and difficulty in walking for more than 30 years. Subsequently based on the patient's medical history, clinical symptoms, magnetic resonance imaging and gene sequencing results, he was finally diagnosed with CTX. Due to the low incidence rate of the disease, clinicians have insufficient knowledge of it, which makes the diagnosis process more tortuous and prolongs the diagnosis time. CONCLUSION: Prompt diagnosis and treatment of CTX improve patient outcomes.

18.
J Cell Mol Med ; 26(18): 4745-4755, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35922965

RESUMO

Mesenchymal stem cell (MSC) therapy is considered a new treatment for a wide range of diseases and injuries, but challenges remain, such as poor survival, homing and engraftment rates, thus limiting the therapeutic efficacy of the transplanted MSCs. Many strategies have been developed to enhance the therapeutic efficacy of MSCs, such as preconditioning, co-transplantation with graft materials and gene modification. Hepatocyte growth factor (HGF) is secreted by MSCs, which plays an important role in MSC therapy. It has been reported that the modification of the HGF gene is beneficial to the therapeutic efficacy of MSCs, including diseases of the heart, lung, liver, urinary system, bone and skin, lower limb ischaemia and immune-related diseases. This review focused on studies involving HGF/MSCs both in vitro and in vivo. The characteristics of HGF/MSCs were summarized, and the mechanisms of their improved therapeutic efficacy were analysed. Furthermore, some insights are provided for HGF/MSCs' clinical application based on our understanding of the HGF gene and MSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo
19.
Mol Ther Methods Clin Dev ; 26: 191-206, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859692

RESUMO

Liver fibrosis is a wound-healing response that results from various chronic damages. If the causes of damage are not removed or effective treatments are not given in a timely manner, it will progress to cirrhosis, even liver cancer. Currently, there are no specific medical therapies for liver fibrosis. Adeno-associated virus (AAV)-mediated gene therapy, one of the frontiers of modern medicine, has gained more attention in many fields due to its high safety profile, low immunogenicity, long-term efficacy in mediating gene expression, and increasingly known tropism. Notably, increasing evidence suggests a promising therapeutic potential for AAV-mediated gene therapy in different liver fibrosis models, which helps to correct abnormally changed target genes in the process of fibrosis and improve liver fibrosis at the molecular level. Moreover, the addition of cell-specific promoters to the genome of recombinant AAV helps to limit gene expression in specific cells, thereby producing better therapeutic efficacy in liver fibrosis. However, animal models are considered to be powerless predictive of tissue tropism, immunogenicity, and genotoxic risks in humans. Thus, AAV-mediated gene therapy will face many challenges. This review systemically summarizes the recent advances of AAV-mediated gene therapy in liver fibrosis, especially focusing on cellular and molecular mechanisms of transferred genes, and presents prospective challenges.

20.
Front Psychiatry ; 13: 903004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733802

RESUMO

The antidepressant mechanism of acupuncture has not been fully elucidated recently. Thus, the objective of the present study is to investigate the antidepressant mechanism of acupuncture of modulating the neuroinflammation induced by high mobility group box-1 (HMGB1) in rats subjected to chronic restraint stress (CRS). Forty-four male Sprague Dawley rats were randomly divided into control, model, escitalopram, and acupuncture group. Except for rats in the control group, all rats were exposed to CRS for 21 days continuously. Rats in the escitalopram group were subjected to a suspension of escitalopram and saline. One hour before CRS procedures, acupuncture was performed at Baihui (GV20) and Yintang (GV29) for rats in the acupuncture group, 20 min per day for 21 days. All rats in each group were conducted to detect the body weight, sucrose preference test at 0, 7, 14, 21 days to evaluate the depression-like behaviors. The expression of microglial activation and HMGB1 in the hippocampus was detected by immunofluorescence. The expression of hippocampal interleukin-10 (IL-10) was detected by western blot. And the content of serum tumor necrosis factor-α (TNF-α) was detected by the enzyme-linked immunosorbent assay method. CRS-exposed rats showed obviously decreased body weight and sucrose preference when compared with the control group, which was reversed by acupuncture. The results have also shown that acupuncture ameliorated the CRS-induced activation of microglia and HMGB1 in the hippocampus CA1 region. Furthermore, acupuncture reduced the stress-induced upregulation of TNF-α in serum. Collectively, the current study highlights the role of acupuncture in alleviating depressive behavior associated with stress-induced neuroinflammation mediated by HMGB1 in the CRS model of depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA