Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17104, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39048610

RESUMO

Picolitre monodisperse droplet printing technology has important applications in biochemistry, such as accounting for quantitative analysis and single-cell analysis, and can be used for parallel high-throughput analysis of biomarkers and chemicals. However, commonly used droplet generation devices require complex control systems or customised microfluidic chips, making them costly and difficult for researchers to operate. Additionally, generating picolitre monodisperse droplets with microfluidic devices necessitates the introduction of an oil phase to block and separate the liquid. This requirement can reduce the throughput of the target droplets and cause cell contamination, hindering the adoption of this technology. By employing a common 1-mm-diameter capillary in the laboratory in combination with a piezoelectric transducer, we have achieved on-demand picolitre droplet printing of less than 100 pL in an oil-free environment. The device was found to be biocompatible with K562 cells. This approach is less costly, offers greater operational freedom, and is easier to integrate with other downstream assay modules or even handheld cell-printing devices. This study holds great potential for application in areas such as single-cell analysis, cell sampling, and pharmaceutical analysis.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos , Células K562 , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Desenho de Equipamento
2.
J Chromatogr A ; 1729: 465036, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38843573

RESUMO

In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 µm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.


Assuntos
Impressão Tridimensional , Aço Inoxidável , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Aço Inoxidável/química , Desenho de Equipamento , Reprodutibilidade dos Testes , Alcanos/análise , Alcanos/isolamento & purificação , Alcanos/química , Álcoois/análise , Álcoois/química , Álcoois/isolamento & purificação
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660804

RESUMO

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Assuntos
Plaquetas , Ciclo-Oxigenase 1 , Modelos Animais de Doenças , Integrases , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária , Fator Plaquetário 4 , Receptores de LDL , Animais , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/deficiência , Agregação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Integrases/genética , Receptores de LDL/genética , Receptores de LDL/deficiência , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Aterosclerose/sangue , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/enzimologia , Fenótipo , Proteínas de Membrana , Complexo Glicoproteico GPIb-IX de Plaquetas
4.
An. bras. dermatol ; 98(1): 17-25, Jan.-Feb. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429628

RESUMO

Abstract Background Oxidative stress is strongly associated with cellular senescence. Numerous studies have indicated that microRNAs (miRNAs) play a critical part in cellular senescence. MiR-181a was reported to induce cellular senescence, however, the potential mechanism of miR-181a in hydrogen peroxide (H2O2)-induced cellular senescence remains obscure. Objective The aim of this study is to investigate the role and regulatory mechanism of miR-181a in H2O2-induced cellular senescence. Methods Human foreskin fibroblasts (HFF) transfected with miR-181a inhibitor/miR-NC with or without H2O2 treatment were divided into four groups: control + miR-NC/miR-181a inhibitor, H2O2 + miR-NC/miR-181a inhibitor. CCK-8 assay was utilized to evaluate the viability of HFF. RT-qPCR was used to measure the expression of miR-181a and its target genes. Protein levels of protein disulfide isomerase family A member 6 (PDIA6) and senescence markers were assessed by western blotting. Senescence-associated β-galactosidase (SA-β-gal) staining was applied for detecting SA-β-gal activity. The activities of SOD, GPx, and CAT were detected by corresponding assay kits. The binding relation between PDIA6 and miR-181a was identified by luciferase reporter assay. Results MiR-181a inhibition suppressed H2O2-induced oxidative stress and cellular senescence in HFF. PDIA6 was targeted by miR-181a and lowly expressed in H2O2-treated HFF. Knocking down PDIA6 reversed miR-181a inhibition-mediated suppressive impact on H2O2-induced oxidative stress and cellular senescence in HFF. Study limitations Signaling pathways that might be mediated by miR-181a/PDIA6 axis were not investigated. Conclusion Downregulated miR-181a attenuates H2O2-induced oxidative stress and cellular senescence in HFF by targeting PDIA6.

5.
Blood ; 141(13): 1553-1559, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36574346

RESUMO

Advances in genomic diagnostics hold promise for improved care of rare hematologic diseases. Here, we describe a novel targeted therapeutic approach for Ghosal hematodiaphyseal dysplasia, an autosomal recessive disease characterized by severe normocytic anemia and bone abnormalities due to loss-of-function mutations in thromboxane A synthase 1 (TBXAS1). TBXAS1 metabolizes prostaglandin H2 (PGH2), a cyclooxygenase (COX) product of arachidonic acid, into thromboxane A2. Loss-of-function mutations in TBXAS result in an increase in PGH2 availability for other PG synthases. The current treatment for Ghosal hematodiaphyseal dysplasia syndrome consists of corticosteroids. We hypothesize that nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit COX-1 and COX-2, could ameliorate the effects of TBXAS1 loss and improve hematologic function by reducing prostaglandin formation. We treated 2 patients with Ghosal hematodiaphyseal dysplasia syndrome, an adult and a child, with standard doses of NSAIDs (aspirin or ibuprofen). Both patients had rapid improvements concerning hematologic parameters and inflammatory markers without adverse events. Mass spectrometry analysis demonstrated that urinary PG metabolites were increased along with proinflammatory lipoxygenase (LOX) products 5-hydroxyeicosatetraenoic acid and leukotriene E4. Our data show that NSAIDs at standard doses surprisingly reduced both COX and LOX products, leading to the resolution of cytopenia, and should be considered for first-line treatment for Ghosal hematodiaphyseal dysplasia syndrome.


Assuntos
Anemia Refratária , Anemia , Pancitopenia , Adulto , Criança , Humanos , Anemia Refratária/tratamento farmacológico , Anemia Refratária/genética , Anti-Inflamatórios não Esteroides/uso terapêutico , Anemia/tratamento farmacológico , Prostaglandina H2 , Síndrome , Transtornos da Insuficiência da Medula Óssea
6.
Oxid Med Cell Longev ; 2022: 6932188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592532

RESUMO

Ionizing radiation- (IR-) induced oxidative stress has been recognized as an important mediator of apoptosis in lens epithelial cells (LECs) and also plays an important role in the pathogenesis of IR-induced cataract. Ferulic acid (FA), a phenolic phytochemical found in many traditional Chinese medicine, has potent radioprotective and antioxidative properties via activating nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway. The goals of this study were to determine the protective effect of FA against IR-induced oxidative damage on human lens epithelial cells (HLECs) and to elucidate the role of Nrf2 signal pathway. HLECs were subjected to 4 Gy X-ray radiation with or without pretreatment of FA. It was found that FA pretreatment protected HLECs against IR-induced cell apoptosis and reduced levels of ROS and MDA caused by radiation in a dose-dependent manner. IR-dependent attenuated activities of antioxidant enzymes (SOD, CAT, and GPx) and decreased ratio of reduced GSH/GSSG were increased by pretreatment of FA. FA inhibited IR-induced increase of Bax and cleaved caspase-3 and the decrease of Bcl-2 in a dose-dependent manner. Furthermore, FA provoked Nrf2 nuclear translocation and upregulated mRNA and protein expressions of HO-1 in a dose-dependent manner. These findings indicated that FA could effectively protect HLECs against IR-induced apoptosis by activating Nrf2 signal pathway to inhibit oxidative stress, which suggested that FA might have a therapeutic potential in the prevention and alleviation of IR-induced cataract.


Assuntos
Catarata , Ácidos Cumáricos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Radiação Ionizante , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Catarata/metabolismo , Ácidos Cumáricos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais
7.
Bioorg Med Chem Lett ; 50: 128313, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390827

RESUMO

Activated macrophages overexpress the folate receptor ß (FR-ß) that can be used for targeted delivery of drugs conjugated to folic acid. FR-expressing macrophages contribute to arthritis progression by secreting prostaglandin E2 (PGE2). Non-steroidal anti-inflammatory drugs (NSAIDs) block PGs and thromboxane by inhibiting the cyclooxygenase (COX) enzymes and are used for chronic pain and inflammation despite their well-known toxicity. New NSAIDs target an enzyme downstream of COXs, microsomal prostaglandin E synthase-1 (mPGES-1). Inhibition of mPGES-1 in inflammatory macrophages promises to retain NSAID efficacy while limiting toxicity. We conjugated a potent mPGES-1 inhibitor, MK-7285, to folate, but the construct released the drug inefficiently. Folate conjugation to the primary alcohol of MK-7285 improved the construct's stability and the release of free drug. Surprisingly, the drug-folate conjugate potentiated PGE2 in FR-positive KB cells, and reduced PGE2 in macrophages independently of the FR. Folate conjugation of NSAIDs is not an optimal strategy for targeting of macrophages.


Assuntos
Receptor 2 de Folato/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Dor/tratamento farmacológico , Prostaglandina-E Sintases/metabolismo , Animais , Sistemas de Liberação de Medicamentos , Receptor 2 de Folato/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/complicações , Camundongos , Camundongos Transgênicos , Dor/etiologia , Prostaglandina-E Sintases/genética
8.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101620

RESUMO

Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect. However, the effect of mPges-1 depletion on blood pressure (BP) in this setting remains unknown. Here, we show that mPges-1 depletion significantly increased the BP response to salt loading in male Ldlr-/- mice, whereas, despite the direct vasodilator properties of PGI2, deletion of the I prostanoid receptor (Ipr) suppressed this response. Furthermore, combined deletion of the Ipr abrogated the exaggerated BP response in male mPges-1-/- mice. Interestingly, these unexpected BP phenotypes were not observed in female mice fed a high-salt diet (HSD). This is attributable to the protective effect of estrogen in Ldlr-/- mice and in Ipr-/- Ldlr-/- mice. Thus, estrogen compensates for a deficiency in PGI2 to maintain BP homeostasis in response to high salt in hyperlipidemic female mice. In male mice, by contrast, the augmented formation of atrial natriuretic peptide (ANP) plays a similar compensatory role, restraining hypertension and oxidant stress in the setting of Ipr depletion. Hence, men with hyperlipidemia on a HSD might be at risk of a hypertensive response to mPGES-1 inhibitors.


Assuntos
Pressão Sanguínea , Homeostase , Receptores de Epoprostenol/deficiência , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Receptores de Epoprostenol/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
9.
Chromosoma ; 130(1): 27-40, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452566

RESUMO

We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Metabolismo Energético , Nucleossomos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
10.
Chin J Integr Med ; 26(8): 568-576, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31974753

RESUMO

BACKGROUND: Knee osteoarthritis (OA) is a major cause of disability among the older adults. Few treatments are safe and effective. Moxibustion is commonly used in treating knee OA in Chinese medicine (CM). CO2 Laser moxibustion device is a substitute for traditional moxibustion, which mimics the effects of traditional moxibustion. More data are needed to support its application in knee OA. OBJECTIVE: ObjectiveThe trial aims to assess the effect and safety of CO2 laser moxibustion in patients with knee osteoarthritis compared with a sham control. METHODS: This is a protocol for a multicenter, randomized, double-blind, placebo-controlled trial. A total of 392 participants were recruited and assigned to the CO2 laser moxibustion group and sham laser moxibustion group with a 1:1 ratio at 6 outpatient clinics in Shanghai, China. Participants in both groups received treatment at the affected knee(s) at the acupuncture point Dubi (ST 35) and an Ashi point. There were 3 sessions per week for 4 weeks, and an additional 20-week follow-up. Primary outcomes were changes in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores at week 4. Secondary outcomes were WOMAC function score, stiffness score and overall score, VAS pain, Short-Form heath survey (SF-36), and patients' global assessment. The serum levels of cytokines involved in progress of knee OA were explored. Safety was assessed during the whole trial. Masking effectiveness was assessed by both participants and treatment providers.This is a protocol for a multicenter, randomized, double-blind, placebo-controlled trial. A total of 392 participants were recruited and assigned to the CO2 laser moxibustion group and sham laser moxibustion group with a 1:1 ratio at 6 outpatient clinics in Shanghai, China. Participants in both groups received treatment at the affected knee(s) at the acupuncture point Dubi (ST 35) and an Ashi point. There were 3 sessions per week for 4 weeks, and an additional 20-week follow-up. Primary outcomes were changes in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores at week 4. Secondary outcomes were WOMAC function score, stiffness score and overall score, VAS pain, Short-Form heath survey (SF-36), and patients' global assessment. The serum levels of cytokines involved in progress of knee OA were explored. Safety was assessed during the whole trial. Masking effectiveness was assessed by both participants and treatment providers. DISCUSSION: CO2 laser moxibustion device, designed as a substitute for CM moxibustion, is easy to use and control with no choking smoke and smell, and is a plausible method for double-blind research. This study would provide rigorous evidence for the effect and safety of CO2 laser moxibustion in treating knee OA (Trial registration No.: ISRCTN15030019).


Assuntos
Dióxido de Carbono , Terapia a Laser/métodos , Moxibustão/métodos , Osteoartrite do Joelho/terapia , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , Medição da Dor , Inquéritos e Questionários
11.
Phys Chem Chem Phys ; 22(3): 1069-1077, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31872838

RESUMO

As one of the simplest hydrocarbons, methane (CH4) has great potential in the research of superconductors. However, the metallization of CH4 has been an issue for a long time. Here, we report the structure, metallization, and superconductivity of CH4 doped by Be at low pressures, based on first-principles calculations. The result shows that the thermodynamically stable BeCH4 with P1[combining macron] space-group can transform into a metal at ambient pressure. This ternary hydride BeCH4 exhibits a superconductivity of ∼6 K below 25.6 GPa. Interestingly, the superconducting critical temperature of BeCH4 can reach ∼30 K at 80 GPa in the form of an a-P1 space-group phase. The charge transfer from Be to CH4 molecules plays an important role in the superconductivity. Our results present a novel way to realize the metallization of methane at relative pressures and indicate that the doped methane is a potential candidate for seeking high temperature and low pressure superconductivity.

12.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819989

RESUMO

Therapeutic vaccines represent a promising immunotherapeutic modality against cancer. Discovery and validation of antigens is the key to develop effective anti-cancer vaccines. Neoantigens, arising from somatic mutations in individual cancers, are considered as ideal cancer vaccine targets because of their immunogenicity and lack of expression in normal tissues. However, only few databases support convenient access to these neoantigens for use in vaccines. To address this gap, we developed a web-accessible database, called NeoPeptide, which contains most of the important characteristics of neoantigens (such as mutation site, subunit sequence, major histocompatibility complex restriction) derived from published literature and other immunological resources. NeoPeptide also provides links to resources for further characterization of the novel features of these neoantigens. NeoPeptide will be regularly updated with newly identified and published neoantigens. Our work will help researchers in identifying neoantigens in different cancers and hasten the search for appropriate cancer vaccine candidates.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Peptídeos/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Lógica Fuzzy , Peptídeos/química , Estatística como Assunto
13.
Front Immunol ; 9: 2565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455703

RESUMO

Colonic tissues in Inflammatory Bowel Disease (IBD) patients exhibit oxygen deprivation and activation of hypoxia-inducible factor 1α and 2α (HIF-1α and HIF-2α), which mediate cellular adaptation to hypoxic stress. Notably, macrophages and neutrophils accumulate preferentially in hypoxic regions of the inflamed colon, suggesting that myeloid cell functions in colitis are HIF-dependent. By depleting ARNT (the obligate heterodimeric binding partner for both HIFα subunits) in a murine model, we demonstrate here that myeloid HIF signaling promotes the resolution of acute colitis. Specifically, myeloid pan-HIF deficiency exacerbates infiltration of pro-inflammatory neutrophils and Ly6C+ monocytic cells into diseased tissue. Myeloid HIF ablation also hinders macrophage functional conversion to a protective, pro-resolving phenotype, and elevates gut serum amyloid A levels during the resolution phase of colitis. Therefore, myeloid cell HIF signaling is required for efficient resolution of inflammatory damage in colitis, implicating serum amyloid A in this process.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Colite/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Proteína Amiloide A Sérica/análise , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Transporte/genética , Colite/induzido quimicamente , Colo/citologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Proteínas Fetais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
14.
Medchemcomm ; 9(2): 239-243, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108917

RESUMO

I kappa B kinase ß (IKKß) is one of the primary targets to regulate canonical NF-κB activity. The misregulation of NF-κB is associated with various diseases, including chronic inflammation and cancers. Most of the known IKKß inhibitors target its active form and suffer from poor selectivity. In the present study, we aim to design inhibitors that can bind to the IKKß inactive form and block its activation. We identified a potential allosteric site between the kinase domain (KD) and ubiquitin-like domain (ULD) of human IKKß and used it to virtually screen a chemical library for allosteric inhibitors. Among the 133 compounds tested, 16 inhibited NF-κB activity by over 50% at 50 µM in a reporter gene assay. Further quantitative measurements and cytotoxicity study gave one compound 124 (3,4-dichloro-2-ethoxy-N-(2,2,6,6-tetramethylpiperidin-4-yl)benzenesulfonamide) which specifically targets the IKKß inactive form. In cells, 124 inhibited IκBα phosphorylation and NF-κB transcriptional activity for the reporter gene with an IC50 of 35 µM by decreasing the phosphorylation level of Ser177/181 on IKKß and blocking its activation upon TNFα stimulation. Molecular dynamics simulations demonstrated that 124 binds to the pocket between KD and ULD in the inactive conformation of IKKß rather than the active conformation. As the first allosteric inhibitor that prevents IKKß activation, 124 provides a good starting point for further inhibitor discovery and a probe for IKKß enzyme cycle and regulatory mechanism study.

15.
Proc Natl Acad Sci U S A ; 115(29): 7503-7508, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967135

RESUMO

The surfaces of many hollow or tubular tissues/organs in our respiratory, gastrointestinal, and urogenital tracts are covered by mucosa with folded patterns. The patterns are induced by mechanical instability of the mucosa under compression due to constrained growth. Recapitulating this folding process in vitro will facilitate the understanding and engineering of mucosa in various tissues/organs. However, scant attention has been paid to address the challenge of reproducing mucosal folding. Here we mimic the mucosal folding process using a cell-laden hydrogel film attached to a prestretched tough-hydrogel substrate. The cell-laden hydrogel constitutes a human epithelial cell lining on stromal component to recapitulate the physiological feature of a mucosa. Relaxation of the prestretched tough-hydrogel substrate applies compressive strains on the cell-laden hydrogel film, which undergoes mechanical instability and evolves into morphological patterns. We predict the conditions for mucosal folding as well as the morphology of and strain in the folded artificial mucosa using a combination of theory and simulation. The work not only provides a simple method to fold artificial mucosa but also demonstrates a paradigm in tissue engineering via harnessing mechanical instabilities guided by quantitative mechanics models.


Assuntos
Células Epiteliais/metabolismo , Hidrogéis/química , Modelos Biológicos , Engenharia Tecidual , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Mucosa/citologia , Mucosa/metabolismo
16.
Biomed Pharmacother ; 105: 491-497, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29883944

RESUMO

Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML.


Assuntos
Ácido Gálico/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Ácido Gálico/farmacologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Phys Chem Chem Phys ; 20(21): 14785-14795, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29780994

RESUMO

Human reticulocyte 15-lipoxygenase (15-LOX) plays an important role in inflammation resolution and is also involved in many cancer-related processes. Both an activator and an inhibitor will serve as research tools for understanding the biological functions of 15-LOX and provide opportunities for drug discovery. In a previous study, both allosteric activators and inhibitors of 15-LOX were discovered through a virtual screening based computational approach. However, why molecules binding to the same site causes different effects remains to be disclosed. In the present study, we used previously reported activator and inhibitor molecules as probes to elucidate the mechanism of allosteric regulation of 15-LOX. We measured the influences of the allosteric activator and inhibitor on the enzymatic reaction rate and found that the activator increases 15-LOX activity by preventing substrate inhibition instead of increasing the turnover number. The inhibitor can also prevent substrate inhibition but decreases the turnover number at the same time, resulting in inhibition. Molecular dynamics simulations were conducted to help explain the underlying mechanism of allostery. Both the activator and inhibitor were demonstrated to be able to prevent 15-LOX from transforming into potentially inactive conformations. Compared to the activator, the inhibitor molecule restrains the motions of residues around the substrate binding site and reduces the flexibility of 15-LOX. These results explained the different effects between the activator and the inhibitor and shed light on how to effectively design novel activator molecules.


Assuntos
Araquidonato 15-Lipoxigenase/química , Inibidores de Lipoxigenase/química , Simulação de Dinâmica Molecular , Regulação Alostérica , Sítios de Ligação , Humanos , Cinética , Oxirredução , Ligação Proteica , Conformação Proteica
18.
Acc Chem Res ; 48(8): 2242-50, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26237215

RESUMO

Inflammation and other common disorders including diabetes, cardiovascular disease, and cancer are often the result of several molecular abnormalities and are not likely to be resolved by a traditional single-target drug discovery approach. Though inflammation is a normal bodily reaction, uncontrolled and misdirected inflammation can cause inflammatory diseases such as rheumatoid arthritis and asthma. Nonsteroidal anti-inflammatory drugs including aspirin, ibuprofen, naproxen, or celecoxib are commonly used to relieve aches and pains, but often these drugs have undesirable and sometimes even fatal side effects. To facilitate safer and more effective anti-inflammatory drug discovery, a balanced treatment strategy should be developed at the biological network level. In this Account, we focus on our recent progress in modeling the inflammation-related arachidonic acid (AA) metabolic network and subsequent multiple drug design. We first constructed a mathematical model of inflammation based on experimental data and then applied the model to simulate the effects of commonly used anti-inflammatory drugs. Our results indicated that the model correctly reproduced the established bleeding and cardiovascular side effects. Multitarget optimal intervention (MTOI), a Monte Carlo simulated annealing based computational scheme, was then developed to identify key targets and optimal solutions for controlling inflammation. A number of optimal multitarget strategies were discovered that were both effective and safe and had minimal associated side effects. Experimental studies were performed to evaluate these multitarget control solutions further using different combinations of inhibitors to perturb the network. Consequently, simultaneous control of cyclooxygenase-1 and -2 and leukotriene A4 hydrolase, as well as 5-lipoxygenase and prostaglandin E2 synthase were found to be among the best solutions. A single compound that can bind multiple targets presents advantages including low risk of drug-drug interactions and robustness regarding concentration fluctuations. Thus, we developed strategies for multiple-target drug design and successfully discovered several series of multiple-target inhibitors. Optimal solutions for a disease network often involve mild but simultaneous interventions of multiple targets, which is in accord with the philosophy of traditional Chinese medicine (TCM). To this end, our AA network model can aptly explain TCM anti-inflammatory herbs and formulas at the molecular level. We also aimed to identify activators for several enzymes that appeared to have increased activity based on MTOI outcomes. Strategies were then developed to predict potential allosteric sites and to discover enzyme activators based on our hypothesis that combined treatment with the projected activators and inhibitors could balance different AA network pathways, control inflammation, and reduce associated adverse effects. Our work demonstrates that the integration of network modeling and drug discovery can provide novel solutions for disease control, which also calls for new developments in drug design concepts and methodologies. With the rapid accumulation of quantitative data and knowledge of the molecular networks of disease, we can expect an increase in the development and use of quantitative disease models to facilitate efficient and safe drug discovery.


Assuntos
Ácido Araquidônico/metabolismo , Inflamação/prevenção & controle , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Sítios de Ligação , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Medicina Tradicional Chinesa , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular , Método de Monte Carlo , Prostaglandina-E Sintases , Estrutura Terciária de Proteína
19.
J Chromatogr A ; 1380: 171-6, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25578046

RESUMO

Thermal desorption-gas chromatography-mass spectrometer (TD-GC-MS) technique has been widely used for analysis of semi-violate organic compounds on atmospheric aerosol. To prevent GC column from being damaged by fine solid particles during thermal desorption process, glass wool as filter mat is indispensible. However, the filtration efficiency has never been validated. In this paper, the most penetrating particle size and the minimum packing thickness of glass wool were calculated based on classical filtration theory. According to the calculation results, packing parameters of glass wool were optimized experimentally using silica particles. It is demonstrated that glass wool with a packing thickness of 30 mm, solidity of 0.039 can effectively block these fine solid particles from penetrating at normal thermal desorption conditions (T=300°C, u=0.4-4 cm/s). Finally, the filtration efficiency of glass wool was further confirmed with real PM2.5 samples. Under the validated filtration condition, TD-GC-MS was applied for the analysis of non-polar organic compounds on real PM2.5 samples, and very good results were obtained.


Assuntos
Filtração , Vidro/química , Material Particulado/química , Adsorção , Aerossóis/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/análise
20.
Bioorg Med Chem Lett ; 18(24): 6549-52, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18952425

RESUMO

The synthesis and biological evaluation of a series of diphenyl ether derivatives were described. The compounds can either activate or inhibit the aminopeptidase activity of leukotriene A(4) hydrolase, while at the same time do not influence the hydrolase activity. Further enzyme kinetics and molecular modeling investigation on these novel chemical activators revealed their possible activation mechanism. These compounds can be used as probes to regulate the aminopeptidase activity of leukotriene A(4) hydrolase.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Éteres Fenílicos/química , Química Farmacêutica , Desenho de Fármacos , Ativação Enzimática , Humanos , Hidrólise , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA