Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Adv Mater ; : e2402434, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684233

RESUMO

To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.

2.
Small ; : e2400468, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516967

RESUMO

Alloy-type antimony (Sb) and conversion-type molybdenum (Mo) anodes have attracted extensive attention in the application of lithium-ion batteries (LIBs) owing to their high theoretical capacity. In this study, Sb2MoO6 nanowires are prepared via a hydrothermal method and assessed their thermal behavior upon heat treatment, observing an intriguing transformation from nanowire to Sb2O3/MoOx nanosheets. To enhance structure stability, the Sb2MoO6 nanowires are successfully coated with a polyphosphazene layer (referred to as PZS@Sb2MoO6), which not only preserved the nanowires form but also yielded N/S co-doped carbon-coated SbPO4/MoOx (NS-C@SbPO4/MoOx) nanowires following annealing in an inert environment. This composite benefits from the stable PO4 3- anion that serve as a buffer against volume expansion and form a Li3PO4 matrix during cycling, both of which substantially bolster ion transport and cycle endurance. Doping with heteroatoms introduces numerous oxygen vacancies, augmenting the number of electrochemically active sites, and carbon integration considerably enhances the electronic conductivity of the electrode and alleviates the volume-change-induced electrode pulverization. Employed as anode materials in LIBs, the NS-C@SbPO4/MoOx electrode exhibits remarkable cycling performance (449.8 mA h g-1 at 1000 mA g-1 over 700 cycles) along with superior rate capability (394.2 mA h g-1 at 2000 mA g-1).

3.
Nanoscale ; 16(10): 5441, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38415374

RESUMO

Expression of concern for 'Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform' by Xunan Jing et al., Nanoscale, 2019, 11, 15508-15518, https://doi.org/10.1039/C9NR04768A.

4.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416810

RESUMO

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Diagnóstico por Imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos
5.
J Mater Chem B ; 12(11): 2905, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419556

RESUMO

Expression of Concern for 'One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy' by Na Zhou et al., J. Mater. Chem. B, 2020, 8, 10540-10548, https://doi.org/10.1039/D0TB01992E.

6.
Eur J Pharmacol ; 966: 176372, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38301817

RESUMO

Constitutive activation of STAT3 plays important role in the pathogenesis of colorectal cancer (CRC). Inhibition of STAT3 has been proposed as a reasonable strategy to suppress CRC. Gamabufotalin (Gam), an effective bioactive compound of ChanChu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, its effect on CRC is still unclear. In this study, we found that Gam significantly inhibited the CRC in vitro and vivo. Furthermore, Gam induced apoptosis to inhibit the viability of HCT-116 and HT-29 cell lines in dose-dependent manner by suppressing the transcription factor STAT3. In addition, Gam was also found to inhibit carcinogenesis of colitis-associated cancer (CAC) in AOM/DSS mice model by inhibiting STAT3. Our findings suggest that Gam may be an effective way to prevent occurrence and development of CRC and CAC.


Assuntos
Bufanolídeos , Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Animais , Camundongos , Colite/complicações , Colite/tratamento farmacológico , Colite/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Proliferação de Células , Neoplasias Colorretais/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
J Adv Res ; 55: 145-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36801383

RESUMO

INTRODUCTION: Myocardial injury is a serious complication in sepsis with high mortality. Zero-valent iron nanoparticles (nanoFe) displayed novel roles in cecal ligation and puncture (CLP)-induced septic mouse model. Nonetheless, its high reactivity makes it difficult for long-term storage. OBJECTIVES: To overcome the obstacle and improve therapeutic efficiency, a surface passivation of nanoFe was designed using sodium sulfide. METHODS: We prepared iron sulfide nanoclusters and constructed CLP mouse models. Then the effect of sulfide-modified nanoscale zero-valent iron (S-nanoFe) on the survival rate, blood routine parameters, blood biochemical parameters, cardiac function, and pathological indicators of myocardium was observed. RNA-seq was used to further explore the comprehensive protective mechanisms of S-nanoFe. Finally, the stability of S-nanoFe-1d and S-nanoFe-30 d, together with the therapeutic efficacy of sepsis between S-nanoFe and nanoFe was compared. RESULTS: The results revealed that S-nanoFe significantly inhibited the growth of bacteria and exerted a protective role against septic myocardial injury. S-nanoFe treatment activated AMPK signaling and ameliorated several CLP-induced pathological processes including myocardial inflammation, oxidative stress, mitochondrial dysfunction. RNA-seq analysis further clarified the comprehensive myocardial protective mechanisms of S-nanoFe against septic injury. Importantly, S-nanoFe had a good stability and a comparable protective efficacy to nanoFe. CONCLUSIONS: The surface vulcanization strategy for nanoFe has a significant protective role against sepsis and septic myocardial injury. This study provides an alternative strategy for overcoming sepsis and septic myocardial injury and opens up possibilities for the development of nanoparticle in infectious diseases.


Assuntos
Traumatismos Cardíacos , Sepse , Camundongos , Animais , Ferro , Miocárdio/patologia , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/patologia , Sepse/tratamento farmacológico , Sepse/complicações , Sulfetos/uso terapêutico
8.
Adv Healthc Mater ; 13(5): e2302868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925607

RESUMO

Burn wound healing continues to pose significant challenges due to excessive inflammation, the risk of infection, and impaired tissue regeneration. In this regard, an antibacterial, antioxidant, and anti-inflammatory nanocomposite (called HPA) that combines a nanosystem using hexachlorocyclotriphosphazene and the natural polyphenol of Phloretin with silver nanoparticles (AgNPs) is developed. HPA effectively disperses AgNPs to mitigate any toxicity caused by aggregation while also showing the pharmacological activities of Phloretin. During the initial stage of wound healing, HPA rapidly releases silver ions from its surface to suppress bacterial activity. Moreover, these nanoparticles are pH-sensitive and degrade efficiently in the acidic infection microenvironment, gradually releasing Phloretin. This sustained release of Phloretin helps scavenge overexpressed reactive oxygen species in the infected microenvironment area, thus reducing the upregulation of pro-inflammatory cytokines. The antibacterial activity, free radical clearance, and regulation of inflammatory factors of HPA through in vitro experiments are validated. Additionally, its effects using an infectious burn mouse model in vivo are evaluated. HPA is found to promote collagen deposition and epithelialization in the wound area. With its synergistic antibacterial, antioxidant, and anti-inflammatory activities, as well as favorable biocompatibilities, HPA shows great promise as a safe and effective multifunctional nanoplatform for burn injury wound dressings.


Assuntos
Anti-Infecciosos , Queimaduras , Nanopartículas Metálicas , Infecção dos Ferimentos , Camundongos , Animais , Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Antibacterianos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Queimaduras/tratamento farmacológico , Floretina
9.
Adv Mater ; 36(8): e2307839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812814

RESUMO

Nanozymes are considered as the promising antimicrobial agents due to the enzyme-like activity for chemo-dynamic therapy (CDT). However, it remains a challenge to develop novel nanozyme systems for achieving stimuli-responsive, and efficient nanozyme catalysis with multimodal synergistic enhancement. In this work, a near-infrared (NIR) plasmonic-enhanced nanozyme catalysis and photothermal performance for effective antimicrobial applications are proposed. A Ti3 C2 MXene/Fe-MOFs composite (MXM) with NIR plasmonic-enhanced CDT combined with photothermal properties is successfully developed by loading metal-organic framework (MOF) nanozymes onto Ti3 C2 MXene. The mechanism of NIR induced localized surface plasmon resonance (LSPR)-enhanced CDT and photothermal therapy (PTT) is well explained through activation energy (Ea ), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), fluorescence analysis experiments, and finite element simulation. It reveals that MXene nanosheets exhibit NIR plasmon exciters and generate hot electrons that can transfer to the surface of Fe-MOFs, promoting the Fenton reaction and enhances CDT. While the photothermal heating of MXene produced by LSPR can also boost the CDT of Fe-MOFs under NIR irradiation. Both in vitro and in vivo experimental results demonstrate that LSPR-induced MXM system has outstanding antimicrobial properties, can promote angiogenesis and collagen deposition, leading to the accelerated wound healing.


Assuntos
Anti-Infecciosos , Estruturas Metalorgânicas , Neoplasias , Nitritos , Elementos de Transição , Humanos , Estruturas Metalorgânicas/química , Ressonância de Plasmônio de Superfície , Neoplasias/terapia , Linhagem Celular Tumoral
10.
Chem Commun (Camb) ; 59(94): 14021-14024, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37946537

RESUMO

Multifunctional metallacycles with solid-state emission are highly important in cancer therapy. Here, an aggregation-induced emission (AIE)-active metallacycle of DTPABT-MC-R is developed with efficient emission in the NIR region in the solid state (PLQYs = 4.92%). DTPABT-MC-R-based nanoparticles also display excellent photo-stability, and impressive photosensitive characteristics (ROS efficiency = 10.74%), finally leading to applications in cellular imaging and photodynamic therapy (PDT).


Assuntos
Dermatite Fototóxica , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
11.
Mol Pharm ; 20(12): 6319-6329, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37904514

RESUMO

Psoriasis is an incurable inflammatory skin disease that is mediated by the immune system. Although kaempferol has been known for its anti-inflammatory, antioxidant, and anticancer properties, its therapeutic effectiveness is often limited due to its poor water solubility and low bioavailability. To address these challenges, we developed a promising kaempferol hydrogel (DK-pGEL) using Pluronic F127 and a deep eutectic solvent (DES) with varying concentrations of kaempferol. In this study, we first evaluated the rheological properties and viscosity of the DK-pGEL hydrogel. The G' of DK-pGEL (∼14 kPa) hydrogels was significantly lower than the control group (∼30 kPa) at 37 °C. The DK-pGEL hydrogel exhibited ideal fluidity and viscosity at 37 °C, as demonstrated by its shear-thinning behavior. Moreover, the DK-pGEL hydrogel showed controlled release characteristics with a drug release of 97.43 ± 5.37 µg/mL over 60 h. Furthermore, in vitro antioxidant experiments revealed that DK-pGEL exhibited significant radical scavenging ability against the DPPH-radical (96.27 ± 0.37%), ABTS-radical (98.11 ± 0.79%), hydroxyl-radical (66.36 ± 1.01%), and superoxide-radical (90.52 ± 0.79%) at a concentration of 250 µg/mL kaempferol. Additionally, DK-pGEL exhibited notable cellular antioxidant effects by inhibiting reactive oxygen species generation. Cell viability assays (CCK8) and live/dead cell assays were conducted to assess the cytotoxicity of DK-pGEL. The results showed that DK-pGEL could effectively inhibit HaCaT cell proliferation without causing significant cytotoxicity. To evaluate the therapeutic potential of DK-pGEL, an imiquimod (IMQ)-induced mouse model of psoriasis-like lesions was employed. Remarkably, the DK-pGEL hydrogel could significantly reduce the psoriasis area and severity index score, improve the histopathology induced by IMQ, and downregulate the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-17A) in the skin tissue. These findings demonstrate that the DES-assisted kaempferol hydrogel holds promise as a topical drug delivery system for psoriasis treatment.


Assuntos
Solventes Eutéticos Profundos , Psoríase , Animais , Camundongos , Hidrogéis , Antioxidantes/uso terapêutico , Quempferóis/farmacologia , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Pele , Imiquimode , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
12.
Int J Biol Macromol ; 253(Pt 1): 126727, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673159

RESUMO

Thanks to their outstanding mechanical properties and corrosion resistance in physiological environments, titanium and its alloys are broadly explored in the field of intravascular devices. However, the biocompatibility is insufficient, causing thrombus formation and even implantation failure. In this study, inspired by the functions of endothelial glycocalyx and the NO-releasing of endothelial cells (ECs), a biomimetic coating (TNTA-Se) with three-dimensional gel-like structures and NO-catalytically generating ability was constructed on the titanium surface. To this end, the titanium alloy was firstly anodized and then annealed to form nanotube structures imitating the three-dimensional villous of glycocalyx, followed by the preparation of the Cu2+-loaded polydopamine intermediate layer for the immobilization of carboxymethyl chitosan and sodium alginate to form the hydrogel structure. Finally, an organoselenium compound (selenocystamine) as an active catalyst was covalently immobilized on the surface to develop a bioactive coating mimicking endothelial function with NO-generating activity. The surface morphologies and chemical structures of the biomimetic coating were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the results indicated that the NO-catalytically generating hydrogel coating was successfully constructed. The results of water contact angle and protein adsorption suggested that the TNTA-Se coating exhibited excellent hydrophilicity, the promotion of bovine serum albumin (BSA) adsorption while the inhibition of fibrinogen (FIB) adsorption. Upon the addition of NO donor S-nitroso glutathione (GSNO) and reducing agent glutathione (GSH), the surface (TNTA-NO) displayed excellent blood compatibility and cytocompatibility to ECs. Compared with other surfaces, the TNTA-NO coating can not only further promote BSA adsorption and inhibit the adhesion and activation of platelets as well as hemolysis, but also significantly enhance ECs adhesion and proliferation and up-regulate VEGF and NO expression of ECs. The current study demonstrated that the NO-catalytically generating hydrogel coating on the titanium alloy can mimic the glycocalyx structure and endothelium function to catalyze a large number of NO donors in human blood to produce NO, and thus simultaneously enhance the surface hemocompatibility and endothelialization, representing a promising strategy for long-term cardiovascular implants of titanium-based devices.


Assuntos
Quitosana , Células Endoteliais , Humanos , Óxido Nítrico , Hidrogéis/farmacologia , Titânio , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Soroalbumina Bovina , Endotélio , Ligas/química , Glutationa , Propriedades de Superfície
13.
Int J Pharm ; 642: 123197, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37406950

RESUMO

The microenvironment of excessive inflammation and the activation of apoptotic signals are primary barriers to neurological recovery following spinal cord injury (SCI). Thus, long-lasting anti-inflammation has become an effective strategy to navigate SCI. Herein, a curcumin (CUR)-containing nanosystem (FCTHPC) with high drug loading efficiency was reported via assembling hydrophobic CUR into cross-linked polyphosphazene (PPZ), and simultaneous loading and coordinating with porous bimetallic polymers for greatly enhanced the water-solubility and biocompatibility of CUR. The nanosystem is noncytotoxic when directing its biological activities. By inhibiting the expression of pro-inflammatory factors (IL-1ß, TNF-α and IL-6) and apoptotic proteins (C-caspase-3 and Bax/Bcl-2), which may be accomplished by activating the Wnt/ß-catenin pathway, the versatile FCTHPC can significantly alleviate the damage to tissues and cells caused by inflammation and apoptosis in the early stage of SCI. In addition, the long-term in vivo studies had demonstrated that FCTHPC could effectively inhibit the formation of glial scars, and simultaneously promote nerve regeneration and myelination, leading to significant recovery of spinal cord function. This study emphasises the promise of the biocompatible CUR-based nanosystem and provides a fresh approach to effectively treat SCI.


Assuntos
Curcumina , Nanopartículas , Traumatismos da Medula Espinal , Ratos , Animais , Curcumina/farmacologia , Curcumina/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/metabolismo , Anti-Inflamatórios/metabolismo , Polímeros/farmacologia , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Regeneração Nervosa , Nanopartículas/uso terapêutico
14.
Colloids Surf B Biointerfaces ; 229: 113446, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481805

RESUMO

An excessive inflammatory response induced by cytokine storms is the primary reason for the deterioration of patients with acute lung injury (ALI). Though natural polyphenols such as curcumin (CUR) have anti-inflammation activity for ALI treatment, they often have limited efficacy due to their poor solubility in water and oxidising tendency. This study investigates a highly cross-linked polyphosphazene nano-drug (PHCH) developed by copolymerisation of CUR and acid-sensitive units (4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide, D-HBD) with hexachlorotripolyphosphonitrile (HCCP) for improved treatment of ALI. PHCH can prolong the blood circulation time and targeted delivery into lung inflammation sites by enhancing CUR's water dispersion and anti-oxidant properties. PHCH also demonstrates the inflammation-responsive release of CUR in an inflammation environment due to the acid-responsive degradation of hydrazine bonds and triphosphonitrile rings in PHCH. Therefore, PHCH has a substantial anti-inflammation activity for ALI treatment by synergistically improving CUR's water-solubility, bioavailability and biocompatibility. As expected, PHCH attenuates the cytokine storm syndrome and alleviates inflammation in the infected cells and tissues by down-regulating several critical inflammatory cytokines (TNF-α, IL-1ß, and IL-8). PHCH also decreases the expression of p-p65 and C-Caspase-1, inhibiting NLRP3 inflammasomes and suppressing NF-κB signalling pathways. The administrated mice experiments confirmed that PHCH accumulation was enhanced in lung tissue and showed the efficient scavenging ability of reactive oxygen species (ROS), effectively blocking the cytokine storm and alleviating inflammatory damage in ALI. This smart polyphosphazene nano-drug with targeting delivery property and inflammation-responsive release of curcumin has excellent potential for the clinical treatment of various inflammatory diseases, including ALI.


Assuntos
Lesão Pulmonar Aguda , Curcumina , Nanopartículas , Camundongos , Animais , Curcumina/química , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/metabolismo , NF-kappa B/metabolismo , Nanopartículas/uso terapêutico
15.
Carbohydr Polym ; 311: 120780, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028883

RESUMO

The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.


Assuntos
Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Quitosana/uso terapêutico , Hemostasia , Hemorragia/tratamento farmacológico , Plaquetas
16.
Biomater Adv ; 149: 213393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966654

RESUMO

Although the construction of nanotube arrays with the micro-nano structures on the titanium surfaces has demonstrated a great promise in the field of blood-contacting materials and devices, the limited surface hemocompatibility and delayed endothelial healing should be further improved. Carbon monoxide (CO) gas signaling molecule within the physiological concentrations has excellent anticoagulation and the ability to promote endothelial growth, exhibiting the great potential for the blood-contact biomaterials, especially the cardiovascular devices. In this study, the regular titanium dioxide nanotube arrays were firstly prepared in situ on the titanium surface by anodic oxidation, followed by the immobilization of the complex of sodium alginate/carboxymethyl chitosan (SA/CS) on the self-assembled modified nanotube surface, the CO-releasing molecule (CORM-401) was finally grafted onto the surface to create a CO-releasing bioactive surface to enhance the biocompatibility. The results of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that the CO-releasing molecules were successfully immobilized on the surface. The modified nanotube arrays not only exhibited excellent hydrophilicity but also could slowly release CO gas molecules, and the amount of CO release increased when cysteine was added. Furthermore, the nanotube array can promote albumin adsorption while inhibit fibrinogen adsorption to some extent, demonstrating its selective albumin adsorption; although this effect was somewhat reduced by the introduction of CORM-401, it can be significantly enhanced by the catalytic release of CO. The results of hemocompatibility and endothelial cell growth behaviors showed that, as compared with the CORM-401 modified sample, although the SA/CS-modified sample had better biocompatibility, in the case of cysteine-catalyzed CO release, the released CO could not only reduce the platelet adhesion and activation as well as hemolysis rate, but also promote endothelial cell adhesion and proliferation as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression. As a result, the research of the present study demonstrated that the releasing CO from TiO2 nanotubes can simultaneously enhance the surface hemocompatibility and endothelialization, which could open a new route to enhance the biocompatibility of the blood-contacting materials and devices, such as the artificial heart valve and cardiovascular stents.


Assuntos
Nanotubos , Titânio , Titânio/farmacologia , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular , Cisteína , Nanotubos/química , Albuminas
17.
Artigo em Inglês | MEDLINE | ID: mdl-36884384

RESUMO

A endospore-forming bacterium, designated strain KQZ6P-2T, was isolated from surface-sterilized bark of the mangrove plant Kandelia candel, collected from Maowei Sea Mangrove Nature Reserve in Guangxi Zhuang Autonomous Region, China. Strain KQZ6P-2T was able to grow at NaCl concentrations in the range of 0-3 % (w/v) with optimum growth at 0-1 % (w/v) NaCl. Growth occurred at 20-42 °C (optimal growth at 30-37 °C) and pH 5.5-6.5 (optimal growth at pH 6.5). The 16S rRNA gene sequence similarity between strain KQZ6P-2T and its closest phylogenetic neighbour Paenibacillus chibensis JCM 9905T was 98.2 %. Phylogenetic analyses using 16S rRNA gene sequences showed that strain KQZ6P-2T formed a distinct lineage with Paenibacillus chibensis JCM 9905T. The draft genome of strain KQZ6P-2T was 5 937 633 bp in size and its DNA G+C content was 47.2mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values among strain KQZ6P-2T and its related species were below the cut-off levels of 95, 70 and 95.5%, respec-tively. The cell-wall peptidoglycan of strain KQZ6P-2T contained meso-diaminopimelic acid as the diagnostic diamino acid. Major cellular fatty acids were anteiso-C15:0 and C16:0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, an unidentified aminolipid and five unidentified lipids. Based on phylogenetic, phenotypic and chemotaxonomic data, strain KQZ6P-2T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus mangrovi sp. nov. is proposed. The type strain is KQZ6P-2T (=MCCC 1K07172T =JCM 34931T).


Assuntos
Paenibacillus , Rhizophoraceae , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Casca de Planta , DNA Bacteriano/genética , Composição de Bases , China , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química , Hibridização Genômica Comparativa
18.
J Colloid Interface Sci ; 641: 366-375, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940593

RESUMO

Transition metal oxides as potentialanodes of lithium-ion batteries (LIBs) possess high theoretical capacity but suffer from large volume expansion and poor conductivity. To overcome these drawbacks, we designed and fabricated polyphosphazene-coated yolk-shelled CoMoO4 nanospheres, in which polyphosphazene with abundant C/P/S/N species was readily converted into carbon shells and provided P/S/N dopants. This resulted in the formation of P/S/N co-doped carbon-coated yolk-shelled CoMoO4 nanospheres (PSN-C@CoMoO4). The PSN-C@CoMoO4 electrode exhibits superior cycle stability of 439.2 mA h g-1at 1000 mA g-1after 500 cycles and rate capability of 470.1 mA h g-1at 2000 mA g-1. The electrochemical and structural analyses reveal that PSN-C@CoMoO4 with yolk-shell structure, coated with carbon and doped with heteroatom not only greatly enhances the charge transfer rate and reaction kinetics, but also efficiently buffers the volume variation upon lithiation/delithiation cycling. Importantly, the use of polyphosphazene as coating/doping agent can be a general strategy for developing advanced electrode materials.

19.
J Mater Chem B ; 10(45): 9466-9467, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36377558

RESUMO

Retraction of 'A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy' by Daquan Wang et al., J. Mater. Chem. B, 2020, 8, 8271-8281, https://doi.org/10.1039/D0TB01373K.

20.
ACS Nano ; 16(12): 20151-20162, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250626

RESUMO

Aggregation-induced emission (AIE) nanoparticles have been widely applied in photodynamic therapy (PDT) over the past few years. However, amorphous nanoaggregates usually occur in their preparation, resulting in loose packing with disordered molecular structures. This still allows free intramolecular motions, thus leading to limited brightness and PDT efficiency. Herein, we report deep-red AIE nanocrystals (NCs) of DTPA-BS-F by following the facile method of nanoprecipitation. It is observed that DTPA-BS-F NCs possess not only a high photoluminescence quantum yield value of 8% in the deep-red region (600-850 nm) but also an impressive reactive oxygen species (ROS) generation efficiency of up to 69%. Moreover, DTPA-BS-F NCs targeting dual-organelles of lysosomes and nucleus to generate ROS are also achieved, thus boosting the PDT effect in cancer therapy both in vitro and in vivo. This work provides high-performance AIE NCs to simultaneously target two organelles for efficient photodynamic therapy, indicating their promising application in all-in-one theranostic platforms.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Medicina de Precisão , Espécies Reativas de Oxigênio , Organelas , Nanopartículas/química , Ácido Pentético , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA