Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 46(5): 1587-1601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37415045

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder, and numerous aberrations of T cell responses have been reported and were implicated in its pathophysiology. Recently, CD4-positive T cells with cytotoxic potential were shown to be involved in autoimmune disease progression and tissue damage. However, the effector functions of this cell type and their potential molecular mechanisms in SLE patients remain to be elucidated. In this study, we find that cytotoxic CD4+CD28- T cells are expanded in SLE patients with flow cytometry analysis, and the percentage of CD4+CD28- T cells positively correlates with the Systemic Lupus International Collaborating Clinics/ACR Damage Index (SDI). Furthermore, our study suggests that interleukin-15 (IL-15) promotes the expansion, proliferation, and cytotoxic function of CD4+CD28- T cells in SLE patients through activation of the Janus kinase3-STAT5 pathway. Further study indicates that IL-15 not only mediates the upregulation of NKG2D, but also cooperates with the NKG2D pathway to regulate the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Together, our study demonstrated that proinflammatory and cytolytic CD4+CD28- T cells expand in SLE patients. The pathogenic potential of these CD4+CD28- T cells is driven by the coupling of the IL-15/IL-15R signaling pathway and the NKG2D/DAP10 signaling pathway, which may open new avenues for therapeutic intervention to prevent SLE progression.


Assuntos
Antineoplásicos , Lúpus Eritematoso Sistêmico , Humanos , Antígenos CD28/metabolismo , Interleucina-15 , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T CD4-Positivos , Antineoplásicos/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
2.
Clin Exp Med ; 23(7): 3417-3429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37103652

RESUMO

Idiopathic inflammatory myopathy (IIM) are heterogeneous autoimmune diseases that primarily affect the proximal muscles. IIM subtypes include dermatomyositis (DM), polymyositis (PM), and anti-synthetase syndrome (ASS). Metabolic disturbances may cause irreversible structural damage to muscle fibers in patients with IIM. However, the metabolite profile of patients with different IIM subtypes remains elusive. To investigate metabolic alterations and identify patients with different IIM subtypes, we comprehensively profiled plasma metabolomics of 46 DM, 13 PM, 12 ASS patients, and 30 healthy controls (HCs) using UHPLC-Q Exactive HF mass spectrometer. Multiple statistical analyses and random forest were used to discover differential metabolites and potential biomarkers. We found that tryptophan metabolism, phenylalanine and tyrosine metabolism, fatty acid biosynthesis, beta-oxidation of very long chain fatty acids, alpha-linolenic acid and linoleic acid metabolism, steroidogenesis, bile acid biosynthesis, purine metabolism, and caffeine metabolism are all enriched in the DM, PM, and ASS groups. We also found that different subtypes of IIM have their unique metabolic pathways. We constructed three models (five metabolites) to identify DM, PM, ASS from HC in the discovery and validation sets. Five to seven metabolites can distinguish DM from PM, DM from ASS, and PM from ASS. A panel of seven metabolites can identify anti-melanoma differentiation-associated gene 5 positive (MDA5 +) DM with high accuracy in the discovery and validation sets. Our results provide potential biomarkers for diagnosing different subtypes of IIM and a better understanding of the underlying mechanisms of IIM.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miosite , Polimiosite , Humanos , Miosite/diagnóstico , Polimiosite/diagnóstico , Biomarcadores
3.
Ecotoxicol Environ Saf ; 246: 114133, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201916

RESUMO

This study prepared surface-modified biochar, including acid washing biochar (HBC) and biochar supported with nanoscale zero-valent iron (nZVI-HBC). The surface-modified biochar was added to sulfamethoxazole (SMX)-contaminated soil with and without earthworms to examine the effects of surface-modified biochar and/or earthworms (Eisenia fetida) on the levels of SMX and its relevant genes (sul1, sul2, and intI1) in the soil. Additionally, the joint toxicity of these exogenous substances on earthworms was investigated. The results showed that although earthworms significantly enhanced the dissipation of SMX in the soils with and without HBC, this effect was not observed in the soil with nZVI-HBC. Among all treatments, nZVI-HBC most effectively accelerated SMX dissipation in the soil, regardless of coexisting earthworms. However, the presence of earthworms significantly increased the total relative abundances of sul1, sul2, and intI1 in the soil. A reasonable explanation for this is the shift in the bacterial community composition rather than the residual level of SMX. When earthworms coexisted, the richness of Proteobacteria evidently increased, which was the main host of the above genes. Both HBC and nZVI-HBC decreased these genes in the soil with earthworms, which was mainly due to the decrease in host genera from Proteobacteria, Actinobacteria, and Gemmatimonadetes. Although there was toxicity of single-surface-modified biochar or SMX on earthworms, the synergistic interaction of surface-modified biochar and SMX resulted in the most serious histopathological changes in earthworms and their highest superoxide dismutase activity.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Ferro/farmacologia , Sulfametoxazol/toxicidade , Poluentes do Solo/análise , Carvão Vegetal/farmacologia , Solo
4.
Front Cell Infect Microbiol ; 12: 935205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846746

RESUMO

Viral oncogenes may drive cellular metabolic reprogramming to modulate the normal epithelia cell malignant transformation. Understanding the viral oncogene-mediated signaling transduction dysregulation that involves in metabolic reprogramming may provide new therapeutic targets for virus-associated cancer treatment. Latent EBV infection and expression of viral oncogenes, including latent membrane proteins 1 and 2 (LMP1/2), and EBV-encoded BamH I-A rightward transcripts (BART) microRNAs (miR-BARTs), have been demonstrated to play fundamental roles in altering host cell metabolism to support nasopharyngeal carcinoma (NPC) pathogenesis. Yet, how do EBV infection and its encoded oncogenes facilitated the metabolic shifting and their roles in NPC carcinogenesis remains unclear. In this review, we will focus on delineating how EBV infection and its encoded oncoproteins altered the metabolic reprograming of infected cells to support their malignances. Furthermore, based on the understanding of the host's metabolic signaling alterations induced by EBV, we will provide a new perspective on the interplay between EBV infection and these metabolic pathways and offering a potential therapeutic intervention strategy in the treatment of EBV-associated malignant diseases.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Carcinogênese , Transformação Celular Neoplásica/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
5.
J Immunol ; 209(2): 238-249, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705251

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-ß, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αß pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.


Assuntos
Infecções por Vírus Epstein-Barr , Síndrome de Sjogren , Linfócitos T CD8-Positivos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética
6.
Proteomics Clin Appl ; 16(1): e2000069, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543527

RESUMO

PURPOSE: Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN: Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS: We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE: This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.


Assuntos
Glomerulonefrite Membranosa/diagnóstico , Rim/patologia , Fosfopeptídeos/análise , Proteoma/análise , Proteômica/métodos , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Humanos , Rim/metabolismo , Fosforilação , Mapas de Interação de Proteínas/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
7.
BMC Cancer ; 21(1): 259, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691643

RESUMO

BACKGROUND: The incidence and mortality of lung cancer are the highest among all cancers. Patients with systemic sclerosis show a four-fold greater risk of lung cancer than the general population. However, the underlying mechanism remains poorly understood. METHODS: The expression profiles of 355 peripheral blood samples were integratedly analyzed, including 70 cases of lung cancer, 61 cases of systemic sclerosis, and 224 healthy controls. After data normalization and cleaning, differentially expressed genes (DEGs) between disease and control were obtained and deeply analyzed by bioinformatics methods. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed online by DAVID and KOBAS. The protein-protein interaction (PPI) networks were constructed from the STRING database. RESULTS: From a total of 14,191 human genes, 299 and 1644 genes were identified as DEGs in systemic sclerosis and lung cancer, respectively. Among them, 64 DEGs were overlapping, including 36 co-upregulated, 10 co-downregulated, and 18 counter-regulated DEGs. Functional and enrichment analysis showed that the two diseases had common changes in immune-related genes. The expression of innate immune response and response to virus-related genes increased significantly, while the expression of negative regulation of cell cycle-related genes decreased notably. In contrast, the expression of mitophagy regulation, chromatin binding and fatty acid metabolism-related genes showed distinct trends. CONCLUSIONS: Stable differences and similarities between systemic sclerosis and lung cancer were revealed. In peripheral blood, enhanced innate immunity and weakened negative regulation of cell cycle may be the common mechanisms of the two diseases, which may be associated with the high risk of lung cancer in systemic sclerosis patients. On the other hand, the counter-regulated DEGs can be used as novelbiomarkers of pulmonary diseases. In addition, fat metabolism-related DEGs were consideredto be associated with clinical blood lipid data.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Escleroderma Sistêmico/genética , Estudos de Casos e Controles , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/imunologia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Fatores de Risco , Escleroderma Sistêmico/epidemiologia , Escleroderma Sistêmico/imunologia
8.
Mediators Inflamm ; 2020: 9527147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410874

RESUMO

Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.


Assuntos
Autofagia , Sistema Imunitário , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Chlorocebus aethiops , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células Vero
9.
World Neurosurg ; 133: e31-e61, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31415895

RESUMO

BACKGROUND: The association between matrix metalloproteinase 9 (MMP-9) gene -1562C/T (rs3918242) polymorphism and the susceptibility of ischemic stroke (IS) has been investigated. However, results were ambiguous and inconsistent. Therefore, we performed this study to better assess the potential relationship between rs3918242 polymorphism and susceptibility risk of IS. METHODS: We included case-control studies concerning the relationship between the rs3918242 polymorphism and IS, and odds ratios with corresponding 95% confidence intervals were used to describe the associations. Furthermore, meta-regression analyses, heterogeneity, cumulative analyses, sensitivity analyses, and publication bias were examined. RESULTS: A total of 19 studies were included for analysis. Significant associations with the risk of IS were detected for the rs3918242 polymorphism in overall population, Asians, and whites. When available data were stratified by gender, we found a significant correlation with the risk of IS in both males and females. Further subgroup analysis by the subtypes of IS showed that the rs3918242 polymorphism was significantly correlated with the risk of patients with large artery atherosclerosis. When stratified by age, we found that the rs3918242 polymorphism was significantly correlated with the risk of IS in patients both aged ≥65 years and >65 years. Both the diabetes and the nondiabetes subgroups reached significant results, and in an analysis stratified by smoking status, an increased risk of IS was associated with smoking. CONCLUSIONS: The rs3918242 polymorphism may be a susceptible predictor of susceptibility of IS. Further large-scale studies are needed to verify the results of our findings.


Assuntos
Isquemia Encefálica/genética , Metaloproteinase 9 da Matriz/genética , Polimorfismo de Nucleotídeo Único , Adulto , Distribuição por Idade , Idoso , Aterosclerose/epidemiologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/epidemiologia , Estudos de Casos e Controles , Fumar Cigarros/epidemiologia , Comorbidade , Intervalos de Confiança , Diabetes Mellitus/epidemiologia , Etnicidade , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Embolia Intracraniana/epidemiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Distribuição por Sexo
10.
J Cell Physiol ; 234(12): 23448-23460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222746

RESUMO

The objective of the current study is to investigate the effect of PTGS2 on proliferation, migration, angiogenesis and apoptosis of endothelial progenitor cells (EPCs) in mice with ischemic stroke through the NF-κB signaling pathway. Middle cerebral artery occlusion (MCAO) model was established in mice. EPCs were identified, in which ectopic expression and depletion experiments were conducted. The mRNA and protein expression of related factors in tissues and cells were measured. Besides, proliferation, migration, angiogenesis, and apoptosis, as well as cell cycle distribution, of cells were determined. MCAO mice showed overexpression of interleukin-6 (IL-6), IL-17, and IL-23, and increased positive protein expression of PTGS2, as well as expression of PTGS2, nuclear factor-κB (NF-κB), tumor suppressor region 1 (TSP-1) and Bcl-2-associated X protein (Bax), but underexpression of vascular endothelial growth factor (VEGF), S-phase kinase associated protein 2 (Skp2), and B-cell lymphoma 2 (Bcl-2). Moreover, ectopic expression of tumor necrosis factor-α significantly elevated the expression of PTGS2, NF-κB, TSP-1, and Bax, as well as cell apoptosis and cell cycle arrest, but decreased the expression of VEGF, Skp2, and Bcl-2, as well as proliferation, migration and angiogenesis of EPCs, and the PTGS2-siRNA group showed an opposite trend. Taken together, we conclude that the specific knockdown of PTGS2 expression could repress the NF-κB signaling pathway, thereby inhibits apoptosis and promotes proliferation, migration and angiogenesis of EPCs, providing protective effect on mice with ischemic stroke.


Assuntos
Encéfalo/irrigação sanguínea , Ciclo-Oxigenase 2/genética , Células Progenitoras Endoteliais/metabolismo , Inativação Gênica , Infarto da Artéria Cerebral Média/metabolismo , NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas Angiogênicas/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/patologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA