Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26907, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449663

RESUMO

To meet the requirements of diagnosis and treatment, photodynamic therapy (PDT) is a promising cancer treatment with less side-effect. A series of novel BODIPY complexes (BODIPY-CDs) served as PDT agents were first reported to enhance the biocompatibility and water solubility of BODIPY matrix through the click reaction of alkynyl-containing BODIPY and azide-modified cyclodextrin (CD). BODIPY-CDs possessed superior water solubility due to the introduction of CD and their fluorescence emission apparently redshifted (>90 nm) on account of triazole units as the linkers compared to alkynyl-containing BODIPY. Moreover, all the BODIPY-CDs were no cytotoxicity toward NIH 3T3 in different drug concentrations from 12.5 to 200 µg/mL, and had a certain inhibitory effect on tumor HeLa cells. Particularly, BODIPY-ß-CD exhibited high reactive oxygen species generation and excellent photodynamic therapy activity against HeLa cells compared to other complexes. The cell viability of BODIPY-ß-CD was dramatically reduced up to 20% in the concentration of 100 µg/mL upon 808 nm laser irradiation. This architecture might provide a new opportunity to develop valuable photodynamic therapy agents for tumor cells.

2.
J Photochem Photobiol B ; 242: 112701, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003123

RESUMO

Phototherapy is a new method to treat tumor, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, the GSH in tumor cells could deplete ROS produced by photosensitizers, resulting in inadequate PDT. Isothiocyanate not only is a new type of anti-tumor drug, but also may combine with GSH, increasing the content of intracellular ROS and improving PDT effect. Here we synthesized a kind of water-soluble nanoparticles (BN NPs) parceling BODIPY-I-35 up with mPEG-ITC and lecithin. mPEG-ITC can react with GSH in tumor cells to reduce the consumption of ROS. BN NPs can be used as vectors to deliver drugs to tumor sites. Under 808 nm laser irradiation, BN NPs solution increased 13 °C within 10 min, indicating that BN NPs had superb photothermal performance. In vitro experiments, low dose BN NPs showed satisfactory PDT and PTT effects, and the cell viability of MCF-7 cell was only 13%. In vivo, BN NPs with excellent biocompatibility showed favorable phototherapy effect and tumor was effectively inhibited. Fluorescence imaging could present the long retention effect of BN NPs in tumor locations. In conclusion, the BN NPs showed the effect of enhancing phototherapy and provided a remarkable application prospect in the phototherapy of tumor cells.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Linhagem Celular Tumoral
3.
Photodiagnosis Photodyn Ther ; 37: 102723, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032702

RESUMO

Photodynamic therapy (PDT) has a successful track record in cancer. . Urea is a naturally occurring metabolite in the human body. Some studies have shown that it can inhibit the proliferation of tumor cells and cause oxidative stress. In order to explore the application of urea in enhancing the PDT effect, we synthesized a new photosensitizer (BODIPY-I-35) with good phototherapeutic effect and encapsulated it in liposomes. Compared with free BODIPY-I-35, water-soluble nanoliposomes (LipoBOD) produced a huge redshift (> 122 nm) of fluorescence emission in solution. When LipoBOD was irradiated with 808 nm laser (1 W/cm2) for 10 min, the temperature contrast increased by 20 °C, which was 4 times higher than free BODIPY-I-35. Confocal microscopy showed appreciable accumulation of LipoBOD in HeLa cells. In addition, when LipoBOD was incubated with urea in HeLa cells, we found that urea not only obviously enhanced the production of ROS, but also increased the apoptosis of HeLa cells. The synergistic effect of LipoBOD (20 µg/mL, at BODIPY-I-35-eq) with urea (250 mM) showed significantly higher phototoxicity than LipoBOD alone. Low dose can reduce the cell viability to 10%. Therefore, we have obtained an effective method of using urea to enhance the PDT effect.


Assuntos
Nanopartículas , Fotoquimioterapia , Compostos de Boro , Células HeLa , Humanos , Lipossomos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Ureia/farmacologia
4.
J Mater Chem B ; 9(36): 7461-7471, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551049

RESUMO

BODIPY dyes have recently been used for photothermal and photodynamic therapy of tumors. However, complex multi-material systems, multiple excitation wavelengths and the unclear relationship between BODIPY structures and their PTT/PDT efficiency are still major issues. In our study, nine novel BODIPY near-infrared dyes were designed and successfully synthesized and then, the relationships between BODIPY structures and their PTT/PDT efficiency were investigated in detail. The results showed that modifications at position 3,5 of the BODIPY core with conjugated structures have better effects on photothermal and photodynamic efficiency than the modifications at position 2,6 with halogen atoms. Density functional theory (DFT) calculations showed that this is mainly due to the extension of the conjugated chain and the photoinduced electron transfer (PET) effect. By encapsulating BDPX-M with amphiphilic DSPE-PEG2000-RGD and lecithin, the obtained NPs not only show good water solubility and biological stability, but also could act as superior agents for photothermal and photodynamic synergistic therapy of tumors. Finally, we obtained BODIPY NPs that exhibited excellent photothermal and photodynamic effects at the same time under single irradiation with an 808 nm laser (photothermal conversion efficiency: 42.76%, A/A0: ∼0.05). In conclusion, this work provides a direction to design and construct phototherapeutic nanoparticles based on BODIPY dyes for tumor treatment.


Assuntos
Materiais Biocompatíveis/química , Compostos de Boro/química , Nanopartículas/química , Animais , Benzofuranos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Transporte de Elétrons , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Neoplasias/terapia , Oligopeptídeos/química , Fotoquimioterapia , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Oxigênio Singlete/metabolismo , Transplante Heterólogo
5.
Adv Healthc Mater ; 10(8): e2001874, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448142

RESUMO

Targeted synergistic therapy has broad prospects in tumor treatments. Here, a multi-functional nanodrug GDYO-CDDP/DOX@DSPE-PEG-MTX (GCDM) based on three traditional anticancer drugs (doxorubicin (DOX), cisplatin (CDDP) and methotrexate (MTX)) modified graphdiyne oxide (GDYO) is described, for diagnosis and targeted cancer photo-chemo synergetic therapy. In this system, for the first time, these three traditional anti-cancer drugs have played new roles and can reduce multidrug resistance through synergistic anti-tumor effects. Cisplatin can be hybridized with GDYO to form a multifunctional and well-dispersed three-dimensional framework, which can not only be used as nano-drug carriers to achieve high drug loading rates (40.3%), but also exhibit excellent photothermal conversion efficiency (47%) and good photodynamic effects under NIR irradiation. Doxorubicin (DOX) is loaded onto GDYO-CDDP through π-π stacking, which is used as an anticancer drug and as a fluorescent probe for nanodrug detection. Methotrexate (MTX) can be applied in tumor targeting and play a role in synergistic chemotherapy with DOX and CDDP. The synthesized multi-functional nanodrug GCDM has good biocompatibility, active targeting, long-term retention, sustained drug release, excellent fluorescence imaging capabilities, and remarkable photo-chemo synergistic therapeutic effects.


Assuntos
Grafite , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Fototerapia
6.
Nanoscale ; 11(24): 11709-11718, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31180099

RESUMO

Multimodal therapies have been regarded as promising strategies for cancer treatment as compared to conventional drug delivery systems that have various drawbacks in either low loading content, uncontrolled release, non-targeting or biotoxicity. We have developed a multifunctional three-dimensional tumor-targeting drug delivery system, Fe3O4@UIO-66-NH2/graphdiyne (FUGY), based on the hybridization of a novel two-dimensional material, graphdiyne (GDY), with a metal organic framework (MOFs) structure, Fe3O4@UIO-66-NH2 (FU). The FU MOF structure has superior ability for magnetic targeting, and was constructed by an in situ growth method in which it was surface-installed with GDY via amide bonds, as a carrier of anticancer drugs. The anticancer drug doxorubicin (DOX) was loaded onto FUGY and served as both an anticancer drug to treat the tumor and a fluorescence probe to ascertain the location of FUGY. The results show that FUGY exhibits a high drug loading content of 43.8% and an effective drug release around the tumor cells at pH 5.0. In particular, fluorescence imaging demonstrates that FUGY can deliver more anticancer drugs to tumor tissue than conventional drug delivery systems. Furthermore, FUGY exhibits superior therapeutic efficiencies with negligible side effects as compared to the direct administration of free DOX, both in vitro and in vivo. The obtained FUGY drug delivery system possesses ideal biocompatibility, sustained drug release, effective chemotherapeutic efficacy, and specific targeting abilities. Such a multimodal therapeutic system can facilitate new possibilities for multifunctional drug delivery systems.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Portadores de Fármacos , Nanopartículas de Magnetita , Neoplasias Experimentais , Imagem Óptica , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
7.
Theranostics ; 8(11): 3111-3125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896306

RESUMO

Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvß3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.


Assuntos
Antineoplásicos/metabolismo , Corantes Fluorescentes/metabolismo , Imidazóis/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias/diagnóstico por imagem , Oligopeptídeos/metabolismo , Animais , Antineoplásicos/química , Boro/química , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Imidazóis/química , Raios Infravermelhos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Nanocápsulas , Oligopeptídeos/química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Proteínas Recombinantes de Fusão , Solubilidade
8.
RSC Adv ; 8(38): 21472-21479, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539954

RESUMO

A novel fluorescent probe was constructed by the self-assembly of monosubstituted BODIPY and a novel targeted hydrophobin named hereafter as HFBI-RGD. Optical measurements and theoretical calculations confirmed that the spectral properties of the probe were greatly influenced by the BODIPY structure, the appropriate volume of BODIPY and the cavity of HFBI-RGD. The experiments in vivo and ex vivo demonstrated that the probe had excellent ability for tumor labelling.

9.
RSC Adv ; 8(36): 20087-20094, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541689

RESUMO

Fluorescent probes have been demonstrated to be promising candidates as biomarkers and biological carriers. Our study focuses on the development of a novel amphiphilic fluorescent probe with good photostability, high water solubility, excellent specificity and promising loading capability for tumor diagnosis and treatment. At first, BODIPY dye and O-carboxymethyl chitosan were prepared via a chemical reaction. Then, the prepared BODIPY dye and cRGD were bonded to O-carboxymethyl chitosan successively via an acylation reaction. Finally, we obtained the desired amphiphilic fluorescent probe: BODIPY-O-CMC-cRGD, which was based on the fluorescence resonance energy transfer (FRET) principle for selective visualization of tumors in vitro. Through a series of experiments, we found that this fluorescent probe possessed better fluorescence characteristics and tumor targeting properties. Simultaneously, by self-assembly, the amphiphilic probe encapsulated the other flexible structure of BODIPY2 and the rigid structure of porphyrin, which formed distinct nanoparticles with different particle sizes. Hence, we could observe different phagocytosis processes of the two nanoparticles in the tumor cells via the fluorescence of dyes by confocal laser scanning microscopy. Therefore, the results suggest that the fluorescent probe has advantages in tumor detection, and the constructed tumor-specific nanoparticles show high clinical potential to be utilized not only in visual and precise diagnosis but also in excellent drug delivery for tumor treatment. Henceforth, we will prepare new targeted and visualized pharmaceuticals by replacing BODIPY2 and porphyrin with antineoplastic drugs for future tumor treatment.

10.
Amino Acids ; 47(7): 1409-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25854877

RESUMO

The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24 h after injection. This study demonstrates that (64)Cu-NOTA-ZIGF-1R:4:40 is a promising PET probe for imaging IGF-1R positive tumor.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioblastoma/diagnóstico por imagem , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacocinética , Glioblastoma/metabolismo , Humanos , Camundongos Nus , Transplante de Neoplasias , Fragmentos de Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Proteínas Recombinantes de Fusão , Proteína Estafilocócica A/química , Distribuição Tecidual
11.
Sci Rep ; 3: 1490, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23508226

RESUMO

Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR)--the key enzyme in melanin production--was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-18F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.


Assuntos
Genes Reporter , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Monofenol Mono-Oxigenase/genética , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imageamento por Ressonância Magnética/métodos , Melaninas/biossíntese , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA