Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169275, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086482

RESUMO

The increase in alien plant invasions poses a major threat to global biodiversity and ecosystem stability. However, the presence of microplastics (MPs) as an environmental stressor could impact the interactions between invasive and native species in an invasive plant community. Nevertheless, the community alterations and underlying mechanisms resulting from these interactions remain unclear. Herein, we systematically investigated the impacts of polyethylene (PE) and polypropylene (PP) on invasive plant communities invaded by Amaranthus palmeri through soil seed bank. The results illustrated that MPs markedly declined community height and biomass, and altered community structure, low-dose MPs could prominently increase community invasion resistance, but reduced community stability. The niche width and niche overlap of A. palmeri and S. viridis declined when exposed to high-dose MPs, but MPs elicited a significant rise in the niche width of S. salsa. PP had the potential to reduce the diversity of invasive plant community. Structural equation model revealed that PP addition could change soil total phosphorus content, thereby leading to a reduction of the community stability. Our study helps to fill the knowledge gap regarding the effects of MPs on invasive plant communities and provide new perspectives for invasive plant management.


Assuntos
Amaranthus , Microplásticos , Plásticos , Ecossistema , Plantas , Solo/química , Polipropilenos
2.
Sci Total Environ ; 899: 165677, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478952

RESUMO

It is thought remediating cadmium pollution with biochar can affect plant traits. However, the potential impact of this practice on plant communities is poorly understood. Here, we established natural-germinated plant communities using soil seed bank from a saline-alkaline wetland and applied a biochar treatment in Cd-polluted wetland soil. The outcomes illustrated that Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC), and Flaveria bidentis biochar (FBC) promoted exchangeable Cd transform into FeMn oxide bound Cd. Additionally, most biochar addition reduced species abundance, root-shoot ratio, biomass, diversity, and community stability, yet enhanced community height. Among all treatments, the 5 % SBC demonstrated the most significant reduction in species abundance, biomass, species richness and functional richness. Specifically, it resulted in a reduction of 92.80 % in species abundance, 73.80 % in biomass, 66.67 % in species richness, and 95.14 % in functional richness compared to the CK. We also observed changes in root morphological traits and community structure after biochar addition. Soil pH, salinity, and nutrients played a dominant role in shaping plant community. These findings have implications for biodiversity conservation, and the use of biochar for the remediation of heavy metals like cadmium should be approached with caution due to its potential negative impacts on plant communities.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Áreas Alagadas , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA