Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992121

RESUMO

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

2.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641746

RESUMO

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Camundongos Endogâmicos C57BL , Fenilenodiaminas , Animais , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Camundongos , Masculino , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Cicloexilaminas/farmacologia , Cicloexilaminas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo
3.
Biochem Pharmacol ; 218: 115901, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084678

RESUMO

The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice. GRPR knockdown significantly attenuated inflammatory and fibrotic responses in adenosine-treated human proximal tubule epithelial cells. GRPR knockout or GRPR conditional knockout in renal tubular epithelial cells significantly alleviated the decline in renal function and fibrosis in HN mice in vivo. RNA-seq and String database analysis revealed that GRP/GRPR promoted HN by suppressing the ABCG2/PDZK1 and increasing TGF-ß/Smad3 levels by activating the NF-κB pathway. Overexpression of GRPR increased TGF-ß/Smad3 levels, where as it reduced ABCG2/PDZK1 levels in adenosine-treated HK2 cells, which was reversed by the NF-κB inhibitor. Furthermore, we evaluated the therapeutic effects of the novel GRPR inhibitor RH-1402 on hyperuricaemia-induced renal injury and evaluated the inflammatory and fibrosis responses in vivo and in vitro. Pre-treatment with RH-1402 attenuated hyperuricaemia-induced renal injury, restored renal function, and suppressed renal inflammation and fibrosis. Taken together, GRPR enhances hyperuricaemia-induced tubular injury, inflammation, and renal fibrosis via ABCG2-dependent mechanisms and may serve as a promising therapeutic target for HN treatment.


Assuntos
Hiperuricemia , Nefropatias , Nefrite , Animais , Humanos , Camundongos , Adenosina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose , Hiperuricemia/tratamento farmacológico , Inflamação , Nefropatias/etiologia , Proteínas de Neoplasias/metabolismo , Nefrite/etiologia , NF-kappa B/metabolismo , Receptores da Bombesina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467831

RESUMO

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Forkhead Box O3/genética , Proteínas de Ligação a RNA/metabolismo
5.
Biomed Pharmacother ; 165: 115166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473682

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Nefrite Lúpica , Humanos , Fator de Transcrição STAT3/metabolismo , Rim/patologia , Nefrite Lúpica/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia
6.
Biomed Pharmacother ; 161: 114497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933382

RESUMO

The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.


Assuntos
Doenças Cardiovasculares , Receptores da Bombesina , Humanos , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina , Transdução de Sinais , Linhagem Celular Tumoral
7.
Life Sci ; 312: 121182, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435226

RESUMO

AIMS: Treating hepatic fibrosis (HF) is a major challenge worldwide. However, the biological functions and regulatory mechanisms of circular RNAs (circRNAs) remain unclear in HF. The present study aimed to elucidate the novel role of circMcph1 in HF. MAIN METHODS: HF mouse model was established by injecting CCl4 intraperitoneally and validated using hematoxylin and eosin staining, immunohistochemistry, and serological tests in vivo. RAW264.7 cells were treated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in vitro inflammatory damage model. Gel electrophoresis, DNA sequencing, RNase R and actinomycin D treatment, random 6 primers and oligo dT primers assay, nuclear and cytoplasmic fractionation assay, and fluorescence in situ hybridization were performed to identify the characteristics of circMcph1. Functional assays such as ELISA, flow cytometry, and adeno-associated virus administration in vivo and liposome delivery gene therapy in vitro were used to determine the functional effects of circMcph1/miR-370-3p/interleukin-1 receptor-associated kinase 2 (Irak2) axis. Mechanistic assays such as luciferase reporter analysis, and chromatin immunoprecipitation revealed the molecular mechanism of the Myc/circMcph1/miR-370-3p/Irak2 axis in HF. KEY FINDINGS: CircMcph1 expression was upregulated in liver tissues and primary Kupffer cells of CCl4-induced HF mice, as well as in LPS and IFN-γ-treated RAW264.7 cells. Knockdown of circMcph1 ameliorated liver fibrogenesis and inflammatory damage in HF mice and reduced the inflammatory response in LPS and IFN-γ-treated RAW264.7 cells. Mechanically, circMcph1 mediated by Myc regulated the expression of Irak2 by sponging miR-370-3p in HF. SIGNIFICANCE: The study findings suggested that the Myc/circMcph1/miR-370-3p/Irak2 axis might be a novel identifier and therapeutic target for HF.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hibridização in Situ Fluorescente , Lipopolissacarídeos/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Proliferação de Células/genética
8.
Br J Pharmacol ; 180(1): 5-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196023

RESUMO

Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.


Assuntos
Injúria Renal Aguda , Carcinoma de Células Renais , Neoplasias Renais , Humanos , RNA , RNA Mensageiro
9.
Front Immunol ; 13: 1015142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405700

RESUMO

Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Rim/metabolismo , Diabetes Mellitus/metabolismo
10.
Int Immunopharmacol ; 112: 109262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166972

RESUMO

Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and programmed cell death of renal tubular epithelial cells. Necroptosis is a form of regulated cell death that requires activation of receptor interacting protein kinase 3 (RIPK3) and its phosphorylation of the substrate MLKL. RIPK3 plays an important role in acute kidney injury, and hence developing its inhibitors is considered as one of the promising strategies aimed at prevention and treatment of AKI. Recently, we discovered AZD5423 as a novel potent RIPK3 inhibitor using a computer-aided hybrid virtual screening strategy according to three-dimensional structure of RIPK3. Our findings revealed that AZD5423 strongly inhibits activation of RIPK3, and MLKL phosphorylation upon cisplatin-, hypoxia/reoxygenation (H/R)- and TNF-α stimuli as compared with GSK872, which is a previously identified RIPK3 inhibitor. Importantly, AZD5423 exerts effective protection against cisplatin- and ischemia/reperfusion (I/R)-induced AKI mouse model. The results of cellular thermal shift assay and experiments in RIPK3 knockout cells indicated that AZD5423 could directly target RIPK3 to inhibit RIPK3 kinase activity. Mechanistically, the docking of AZD5423 and RIPK3 suggested that the kinase domain of RIPK3 for Lys50, Arg313, Lys29, Arg37 might form hydrogen bonds with AZD5423. Site-directed mutagenesis further revealed that AZD5423 reduces injury response via interacting with the key RIPK3 amino acid residues of Lys50 and Arg313. In conclusion, our study has demonstrated that AZD5423 may serve as a potent inhibitor of RIPK3 kinase and a promising clinical candidate for AKI treatment.


Assuntos
Injúria Renal Aguda , Necroptose , Camundongos , Animais , Cisplatino/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Injúria Renal Aguda/induzido quimicamente , Inflamação/metabolismo , Aminoácidos
11.
Biomolecules ; 12(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-36008929

RESUMO

Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spectrum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment strategies are urgently required for ALD patients. In previous decades, numerous rodent models were established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic targets. This review provides a summary of the latest developments in rodent models, including those that involve EtOH administration, which will help us to understand the characteristics and causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize the existing in vitro models. We analyse the pros and cons of these models and their translational relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic liver injury.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Etanol/toxicidade , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Neoplasias Hepáticas/patologia
12.
Int Immunopharmacol ; 110: 109034, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834952

RESUMO

Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor ß (PDGFR-ß) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.


Assuntos
Células Estreladas do Fígado , MicroRNAs/metabolismo , Animais , Proliferação de Células , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/metabolismo , Camundongos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Transdução de Sinais
13.
Kidney Int ; 102(4): 828-844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752325

RESUMO

The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI, possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.


Assuntos
Injúria Renal Aguda , Inibidor Tecidual de Metaloproteinase-2 , Adenosina Difosfato Ribose , Animais , Biomarcadores , Cisplatino/toxicidade , Inflamação , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/metabolismo
14.
Bioorg Chem ; 124: 105794, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533545

RESUMO

The side effects of acute Kidney Injury (AKI) and nephrotoxicity limit the application of cisplatin in cancer treatment. Inflammation and oxidative stress paly important role in the pathogenesis of cisplatin-induced AKI. Gastrin-releasing peptide receptor (GRPR) plays an important role in inflammatory response. In this study, we designed 34 new Pd176252 analogs, most synthesized compounds could reduce cisplatin-induced HK2 cell death. Of these compounds, 9b had strong binding affinity with GRPR, and significantly increased HK2 cell viability. Compound 9b significantly downregulated the level of creatinine, blood urea nitrogen (BUN), and malondialdehyde (MDA), and recovered the glutathione (GSH) level in cisplatin-induced AKI model. It also decreased the level of kidney injury molecule-1(KIM-1) in vitro and vivo. In the further pathogenesis studies, 9b downregulated level of inflammatory factors (TNF-α, IL-1ß, IL-6 and MCP-1), suppressed the nuclear factor-kappa B (NF-kB) phosphorylation, and decreased GRPR level. The results suggested that ameliorating cisplatin-induced AKI actions of 9b was involved in downregulation of TNF-α, IL-1ß, IL-6, and MCP-1, inhibition of NF-kB activation, and reduction of GRPR and oxidative stress level.


Assuntos
Injúria Renal Aguda , Cisplatino , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Apoptose , Cisplatino/farmacologia , Glutationa/metabolismo , Humanos , Interleucina-6/metabolismo , Rim , NF-kappa B/metabolismo , Estresse Oxidativo , Receptores da Bombesina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Acta Pharmacol Sin ; 43(11): 2789-2806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35365780

RESUMO

Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.


Assuntos
Nefropatias Diabéticas , Proteínas NLR , Humanos , Proteínas NLR/metabolismo , Imunidade Inata , Rim/metabolismo , Proteínas de Transporte
16.
Sci Transl Med ; 14(640): eabk2709, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417191

RESUMO

The role of N6-methyladenosine (m6A) modifications in renal diseases is largely unknown. Here, we characterized the role of N6-adenosine-methyltransferase-like 3 (METTL3), whose expression is elevated in renal tubules in different acute kidney injury (AKI) models as well as in human biopsies and cultured tubular epithelial cells (TECs). METTL3 silencing alleviated renal inflammation and programmed cell death in TECs in response to stimulation by tumor necrosis factor-α (TNF-α), cisplatin, and lipopolysaccharide (LPS), whereas METTL3 overexpression had the opposite effects. Conditional knockout of METTL3 from mouse kidneys attenuated cisplatin- and ischemic/reperfusion (I/R)-induced renal dysfunction, injury, and inflammation. Moreover, TAB3 [TGF-ß-activated kinase 1 (MAP3K7) binding protein 3] was identified as a target of METTL3 by m6A methylated RNA immunoprecipitation sequencing and RNA sequencing. The stability of TAB3 was increased through binding of IGF2BP2 (insulin-like growth factor 2 binding protein 2) to its m6A-modified stop codon regions. The proinflammatory effects of TAB3 were then explored both in vitro and in vivo. Adeno-associated virus 9 (AAV9)-mediated METTL3 silencing attenuated renal injury and inflammation in cisplatin- and LPS-induced AKI mouse models. We further identified Cpd-564 as a METTL3 inhibitor that had better protective effects against cisplatin- and ischemia/reperfusion-induced renal injury and inflammation than S-adenosyl-l-homocysteine, a previously identified METTL3 inhibitor. Collectively, METTL3 promoted m6A modifications of TAB3 and enhanced its stability via IGF2BP2-dependent mechanisms. Both genetic and pharmacological inhibition of METTL3 attenuated renal injury and inflammation, suggesting that the METTL3/TAB3 axis is a potential target for treatment of AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cisplatino/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Rim/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Proteínas de Ligação a RNA/metabolismo , Traumatismo por Reperfusão/metabolismo
17.
Theranostics ; 12(1): 324-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987648

RESUMO

Background: Macrophage infiltration around lipotoxic tubular epithelial cells (TECs) is a hallmark of diabetic nephropathy (DN). However, how these two types of cells communicate remains obscure. We previously demonstrated that LRG1 was elevated in the process of kidney injury. Here, we demonstrated that macrophage-derived, LRG1-enriched extracellular vesicles (EVs) exacerbated DN. Methods: We induced an experimental T2DM mouse model with a HFD diet for four months. Renal primary epithelial cells and macrophage-derived EVs were isolated from T2D mice by differential ultracentrifugation. To investigate whether lipotoxic TEC-derived EV (EVe) activate macrophages, mouse bone marrow-derived macrophages (BMDMs) were incubated with EVe. To investigate whether activated macrophage-derived EVs (EVm) induce lipotoxic TEC apoptosis, EVm were cocultured with primary renal tubular epithelial cells. Subsequently, we evaluated the effect of LRG1 in EVe by investigating the apoptosis mechanism. Results: We demonstrated that incubation of primary TECs of DN or HK-2 mTECs with lysophosphatidyl choline (LPC) increased the release of EVe. Interestingly, TEC-derived EVe activated an inflammatory phenotype in macrophages and induced the release of macrophage-derived EVm. Furthermore, EVm could induce apoptosis in TECs injured by LPC. Importantly, we found that leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EVe activated macrophages via a TGFßR1-dependent process and that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-enriched EVm induced apoptosis in injured TECs via a death receptor 5 (DR5)-dependent process. Conclusion: Our findings indicated a novel cell communication mechanism between tubular epithelial cells and macrophages in DN, which could be a potential therapeutic target.


Assuntos
Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo , Animais , Apoptose , Comunicação Celular , Linhagem Celular , Células Epiteliais/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL
18.
J Cell Mol Med ; 26(4): 1144-1155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001506

RESUMO

High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG-induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 µmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 µmol/L) significantly reduced the expression of PI3K-p85, p-Akt, p-AS160, membrane-bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1-mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG-induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.


Assuntos
Berberina , Diabetes Mellitus , Nefropatias Diabéticas , Animais , Berberina/farmacologia , Ciclo Celular , Divisão Celular , Proliferação de Células , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células Mesangiais/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
20.
Adv Sci (Weinh) ; 9(1): e2101235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791825

RESUMO

Cancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution. MMT cells (MMTs) are observed in non-small-cell lung carcinoma (NSCLC) associated with CAF abundance and patient mortality. By fate-mapping study, RNA velocity, and pseudotime analysis, existence of novel macrophage-lineage-derived CAF subset in the TME of Lewis lung carcinoma (LLC) model is confirmed, which is directly transited via MMT from M2-TAM in vivo and bone-marrow-derived macrophages (BMDM) in vitro. Adoptive transfer of BMDM-derived MMTs markedly promote CAF formation in LLC-bearing mice. Mechanistically, a Smad3-centric regulatory network is upregulated in the MMTs of NSCLC, where chromatin immunoprecipitation sequencing(ChIP-seq) detects a significant enrichment of Smad3 binding on fibroblast differentiation genes in the macrophage-lineage cells in LLC-tumor. More importantly, macrophage-specific deletion and pharmaceutical inhibition of Smad3 effectively block MMT, therefore, suppressing the CAF formation and cancer progression in vivo. Thus, MMT may represent a novel therapeutic target of CAF for cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Proteína Smad3/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Miofibroblastos/patologia , Transdução de Sinais/genética , Proteína Smad3/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA