Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579712

RESUMO

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Assuntos
Células Epiteliais Alveolares , Pulmão , Células-Tronco , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Diferenciação Celular , Linhagem da Célula , Pulmão/citologia , Pulmão/metabolismo , Pulmão/fisiologia , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/citologia
2.
Proc Natl Acad Sci U S A ; 120(25): e2207210120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307455

RESUMO

The classical manifestation of COVID-19 is pulmonary infection. After host cell entry via human angiotensin-converting enzyme II (hACE2), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can infect pulmonary epithelial cells, especially the AT2 (alveolar type II) cells that are crucial for maintaining normal lung function. However, previous hACE2 transgenic models have failed to specifically and efficiently target the cell types that express hACE2 in humans, especially AT2 cells. In this study, we report an inducible, transgenic hACE2 mouse line and showcase three examples for specifically expressing hACE2 in three different lung epithelial cells, including AT2 cells, club cells, and ciliated cells. Moreover, all these mice models develop severe pneumonia after SARS-CoV-2 infection. This study demonstrates that the hACE2 model can be used to precisely study any cell type of interest with regard to COVID-19-related pathologies.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Camundongos Transgênicos , SARS-CoV-2 , Células Epiteliais , Células Epiteliais Alveolares , Modelos Animais de Doenças
3.
Dev Cell ; 58(16): 1502-1512.e3, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348503

RESUMO

Cardiac resident macrophages play vital roles in heart development, homeostasis, repair, and regeneration. Recent studies documented the hematopoietic potential of cardiac endothelium that supports the generation of cardiac macrophages and peripheral blood cells in mice. However, the conclusion was not strongly supported by previous genetic tracing studies, given the non-specific nature of conventional Cre-loxP tracing tools. Here, we develop an intercellular genetic labeling system that can permanently trace heart-specific endothelial cells based on cell-cell interaction in mice. Results from cell-cell contact-mediated genetic fate mapping demonstrate that cardiac endothelial cells do not exhibit hemogenic potential and do not contribute to cardiac macrophages or other circulating blood cells. This Matters Arising paper is in response to Shigeta et al. (2019), published in Developmental Cell. See also the response by Liu and Nakano (2023), published in this issue.


Assuntos
Células Endoteliais , Coração , Camundongos , Animais , Linhagem da Célula/genética , Diferenciação Celular , Endotélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA