Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 4(10): 1881-91, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085922

RESUMO

The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively.


Assuntos
Retrovirus Endógenos/genética , Pigmentação/genética , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Cruzamento , Gatos , Ligação Genética , Genética Populacional , Genótipo , Perda Auditiva/patologia , Perda Auditiva/veterinária , Células-Tronco Hematopoéticas/metabolismo , Íntrons , Mastócitos/metabolismo , Linhagem , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Retroelementos/genética , Análise de Sequência de RNA , Sequências Repetidas Terminais/genética
2.
J Ophthalmol ; 2011: 906943, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21584261

RESUMO

Large mammals, including canids and felids, are affected by spontaneously occurring hereditary retinal diseases with similarities to those of humans. The large mammal models may be used for thorough clinical characterization of disease processes, understanding the effects of specific mutations, elucidation of disease mechanisms, and for development of therapeutic intervention. Two well-characterized feline models are addressed in this paper. The first model is the autosomal recessive, slowly progressive, late-onset, rod-cone degenerative disease caused by a mutation in the CEP290 gene. The second model addressed in this paper is the autosomal dominant early onset rod cone dysplasia, putatively caused by the mutation found in the CRX gene. Therapeutic trials have been performed mainly in the former type including stem cell therapy, retinal transplantation, and development of ocular prosthetics. Domestic cats, having large human-like eyes with comparable spontaneous retinal diseases, are also considered useful for gene replacement therapy, thus functioning as effective model systems for further research.

3.
Invest Ophthalmol Vis Sci ; 51(6): 2852-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20053974

RESUMO

PURPOSE: To elucidate the gene defect in a pedigree of cats segregating for autosomal dominant rod-cone dysplasia (Rdy), a retinopathy characterized extensively from a clinical perspective. Disease expression in Rdy cats is comparable to that in young patients with congenital blindness (Leber congenital amaurosis [LCA] or retinitis pigmentosa [RP]). METHODS: A pedigree segregating for Rdy was generated and phenotyped by clinical ophthalmic examination methods including ophthalmoscopy and full-field flash electroretinography. Short tandem repeat loci tightly linked to candidate genes for autosomal dominant retinitis pigmentosa in humans were genotyped in the pedigree. RESULTS: Significant linkage was established to the candidate gene CRX (LOD = 5.56, = 0) on cat chromosome E2. A single base pair deletion was identified in exon 4 (n.546delC) in affected individuals but not in unaffected littermates. This mutation generates a frame shift in the transcript, introducing a premature stop codon truncating the putative CRX peptide, which would eliminate the critical transcriptional activation region. Clinical observations corroborate previously reported clinical reports about Rdy. Results show that the cone photoreceptor system was more severely affected than the rods in the early disease process. CONCLUSIONS: A putative mutation causative of the Rdy phenotype has been described as a single base pair deletion in exon 4 of the CRX gene, thus identifying the first animal model for CRX-linked disease that closely resembles the human disease. As such, it will provide valuable insights into the mechanisms underlying these diseases and their variable presentation, as well as providing a suitable model for testing therapies for these diseases.


Assuntos
Doenças do Gato/genética , Códon sem Sentido , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Células Fotorreceptoras de Vertebrados/patologia , Displasia Retiniana/veterinária , Transativadores/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças do Gato/patologia , Gatos , Mapeamento Cromossômico , Análise Mutacional de DNA/veterinária , Adaptação à Escuridão , Eletrorretinografia/veterinária , Éxons/genética , Feminino , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Displasia Retiniana/genética , Displasia Retiniana/patologia , Homologia de Sequência de Aminoácidos
4.
J Hered ; 98(3): 211-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17507457

RESUMO

A mutation in the CEP290 gene is reported in a cat pedigree segregating for autosomal recessive (AR) late-onset photoreceptor degeneration (rdAc). An initial screen of 39 candidate genes and genomic locations failed to detect linkage to cat rdAc. Linkage was ultimately established on cat B4 with 15 simple tandem repeat markers (logarithm of odds [LOD] range 4.83-15.53, Theta = 0.0), in a region demonstrating conserved synteny to human chromosome 12, 84.9-90.63 Mb. The sequence of 10 genes with feline retinal expression was examined in affected and unaffected individuals. A single-nucleotide polymorphism was characterized in intron 50 of CEP290 (IVS50 + 9T>G) that creates a strong canonical splice donor site, resulting in a 4-bp insertion and frameshift in the mRNA transcript, with subsequent introduction of a stop codon and premature truncation of the protein. A population genetic survey of 136 cats demonstrated that the rdAc mutation is in low frequency in Abyssinian populations (0.13, Sweden; 0.07, United States) and absent in breeds of non-Abyssinian heritage. Mutations in CEP290 have recently been shown to cause two human diseases, Joubert syndrome, a syndromic retinal degeneration, and Leber's congenital amaurosis, an AR early-onset retinal dystrophy. Human AR retinitis pigmentosa is among the most common causes of retinal degeneration and blindness, with no therapeutic intervention available. This identification of a large animal model for human retinal blindness offers considerable promise in developing gene-based therapies.


Assuntos
Antígenos de Neoplasias/genética , Modelos Animais , Mutação , Proteínas de Neoplasias/genética , Degeneração Retiniana/genética , Animais , Gatos , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , DNA Complementar , Humanos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Especificidade da Espécie
5.
Genomics ; 89(2): 189-96, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16997530

RESUMO

We report the construction of a 1.5-Mb-resolution radiation hybrid map of the domestic cat genome. This new map includes novel microsatellite loci and markers derived from the 2X genome sequence that target previous gaps in the feline-human comparative map. Ninety-six percent of the 1793 cat markers we mapped have identifiable orthologues in the canine and human genome sequences. The updated autosomal and X-chromosome comparative maps identify 152 cat-human and 134 cat-dog homologous synteny blocks. Comparative analysis shows the marked change in chromosomal evolution in the canid lineage relative to the felid lineage since divergence from their carnivoran ancestor. The canid lineage has a 30-fold difference in the number of interchromosomal rearrangements relative to felids, while the felid lineage has primarily undergone intrachromosomal rearrangements. We have also refined the pseudoautosomal region and boundary in the cat and show that it is markedly longer than those of human or mouse. This improved RH comparative map provides a useful tool to facilitate positional cloning studies in the feline model.


Assuntos
Gatos/genética , Mapeamento de Híbridos Radioativos , Animais , Evolução Biológica , Cromossomos Humanos X/genética , Cães/genética , Marcadores Genéticos , Genoma , Genoma Humano , Genômica , Humanos , Repetições de Microssatélites , Especificidade da Espécie , Cromossomo X/genética
6.
Genome Res ; 16(9): 1084-90, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16899656

RESUMO

The leading genetic cause of infant mortality is spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of disorders. Previously we described a domestic cat model of autosomal recessive, juvenile-onset SMA similar to human SMA type III. Here we report results of a whole-genome scan for linkage in the feline SMA pedigree using recently developed species-specific and comparative mapping resources. We identified a novel SMA gene candidate, LIX1, in an approximately140-kb deletion on feline chromosome A1q in a region of conserved synteny to human chromosome 5q15. Though LIX1 function is unknown, the predicted secondary structure is compatible with a role in RNA metabolism. LIX1 expression is largely restricted to the central nervous system, primarily in spinal motor neurons, thus offering explanation of the tissue restriction of pathology in feline SMA. An exon sequence screen of 25 human SMA cases, not otherwise explicable by mutations at the SMN1 locus, failed to identify comparable LIX1 mutations. Nonetheless, a LIX1-associated etiology in feline SMA implicates a previously undetected mechanism of motor neuron maintenance and mandates consideration of LIX1 as a candidate gene in human SMA when SMN1 mutations are not found.


Assuntos
Deleção de Genes , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Animais , Sequência de Bases , Gatos , Sobrevivência Celular , Mapeamento Cromossômico , Cistinil Aminopeptidase/genética , Cistinil Aminopeptidase/metabolismo , Genótipo , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA