Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Methods ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649742

RESUMO

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.

2.
Radiother Oncol ; 188: 109901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678623

RESUMO

BACKGROUND: Many automatic approaches to brain tumor segmentation employ multiple magnetic resonance imaging (MRI) sequences. The goal of this project was to compare different combinations of input sequences to determine which MRI sequences are needed for effective automated brain metastasis (BM) segmentation. METHODS: We analyzed preoperative imaging (T1-weighted sequence ± contrast-enhancement (T1/T1-CE), T2-weighted sequence (T2), and T2 fluid-attenuated inversion recovery (T2-FLAIR) sequence) from 339 patients with BMs from seven centers. A baseline 3D U-Net with all four sequences and six U-Nets with plausible sequence combinations (T1-CE, T1, T2-FLAIR, T1-CE + T2-FLAIR, T1-CE + T1 + T2-FLAIR, T1-CE + T1) were trained on 239 patients from two centers and subsequently tested on an external cohort of 100 patients from five centers. RESULTS: The model based on T1-CE alone achieved the best segmentation performance for BM segmentation with a median Dice similarity coefficient (DSC) of 0.96. Models trained without T1-CE performed worse (T1-only: DSC = 0.70 and T2-FLAIR-only: DSC = 0.73). For edema segmentation, models that included both T1-CE and T2-FLAIR performed best (DSC = 0.93), while the remaining four models without simultaneous inclusion of these both sequences reached a median DSC of 0.81-0.89. CONCLUSIONS: A T1-CE-only protocol suffices for the segmentation of BMs. The combination of T1-CE and T2-FLAIR is important for edema segmentation. Missing either T1-CE or T2-FLAIR decreases performance. These findings may improve imaging routines by omitting unnecessary sequences, thus allowing for faster procedures in daily clinical practice while enabling optimal neural network-based target definitions.

3.
ArXiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37396600

RESUMO

Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.

4.
ArXiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37396608

RESUMO

Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1544-1547, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086554

RESUMO

Automatic localization and segmentation of organs-at-risk (OAR) in CT are essential pre-processing steps in medical image analysis tasks, such as radiation therapy planning. For instance, the segmentation of OAR surrounding tumors enables the maximization of radiation to the tumor area without compromising the healthy tissues. However, the current medical workflow requires manual delineation of OAR, which is prone to errors and is annotator-dependent. In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation rather than novel localization or segmentation architectures. To the best of our knowledge, our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging. In the first step, a 3D multi-variate regression network predicts organs' centroids and bounding boxes. Secondly, 3D organ-specific segmentation networks are leveraged to generate a multi-organ segmentation map. Our method achieved an overall Dice score of 0.9260 ± 0.18% on the VISCERAL dataset containing CT scans with varying fields of view and multiple organs.


Assuntos
Órgãos em Risco , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos
6.
Eur J Nucl Med Mol Imaging ; 49(12): 4064-4072, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35771265

RESUMO

PURPOSE: Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. METHODS: Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. RESULTS: An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. CONCLUSION: The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT.


Assuntos
Lutécio , Neoplasias de Próstata Resistentes à Castração , Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Humanos , Lutécio/uso terapêutico , Aprendizado de Máquina , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Estudos Retrospectivos , Ureia/análogos & derivados
7.
Tomography ; 8(1): 479-496, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35202204

RESUMO

An important factor for the development of spinal degeneration, pain and the outcome of spinal surgery is known to be the balance of the spine. It must be analyzed in an upright, standing position to ensure physiological loading conditions and visualize load-dependent deformations. Despite the complex 3D shape of the spine, this analysis is currently performed using 2D radiographs, as all frequently used 3D imaging techniques require the patient to be scanned in a prone position. To overcome this limitation, we propose a deep neural network to reconstruct the 3D spinal pose in an upright standing position, loaded naturally. Specifically, we propose a novel neural network architecture, which takes orthogonal 2D radiographs and infers the spine's 3D posture using vertebral shape priors. In this work, we define vertebral shape priors using an atlas and a spine shape prior, incorporating both into our proposed network architecture. We validate our architecture on digitally reconstructed radiographs, achieving a 3D reconstruction Dice of 0.95, indicating an almost perfect 2D-to-3D domain translation. Validating the reconstruction accuracy of a 3D standing spine on real data is infeasible due to the lack of a valid ground truth. Hence, we design a novel experiment for this purpose, using an orientation invariant distance metric, to evaluate our model's ability to synthesize full-3D, upright, and patient-specific spine models. We compare the synthesized spine shapes from clinical upright standing radiographs to the same patient's 3D spinal posture in the prone position from CT.


Assuntos
Coluna Vertebral , Posição Ortostática , Humanos , Imageamento Tridimensional/métodos , Postura , Radiografia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia
8.
Front Neuroimaging ; 1: 977491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555157

RESUMO

Registration methods facilitate the comparison of multiparametric magnetic resonance images acquired at different stages of brain tumor treatments. Image-based registration solutions are influenced by the sequences chosen to compute the distance measure, and the lack of image correspondences due to the resection cavities and pathological tissues. Nonetheless, an evaluation of the impact of these input parameters on the registration of longitudinal data is still missing. This work evaluates the influence of multiple sequences, namely T1-weighted (T1), T2-weighted (T2), contrast enhanced T1-weighted (T1-CE), and T2 Fluid Attenuated Inversion Recovery (FLAIR), and the exclusion of the pathological tissues on the non-rigid registration of pre- and post-operative images. We here investigate two types of registration methods, an iterative approach and a convolutional neural network solution based on a 3D U-Net. We employ two test sets to compute the mean target registration error (mTRE) based on corresponding landmarks. In the first set, markers are positioned exclusively in the surroundings of the pathology. The methods employing T1-CE achieves the lowest mTREs, with a improvement up to 0.8 mm for the iterative solution. The results are higher than the baseline when using the FLAIR sequence. When excluding the pathology, lower mTREs are observable for most of the methods. In the second test set, corresponding landmarks are located in the entire brain volumes. Both solutions employing T1-CE obtain the lowest mTREs, with a decrease up to 1.16 mm for the iterative method, whereas the results worsen using the FLAIR. When excluding the pathology, an improvement is observable for the CNN method using T1-CE. Both approaches utilizing the T1-CE sequence obtain the best mTREs, whereas the FLAIR is the least informative to guide the registration process. Besides, the exclusion of pathology from the distance measure computation improves the registration of the brain tissues surrounding the tumor. Thus, this work provides the first numerical evaluation of the influence of these parameters on the registration of longitudinal magnetic resonance images, and it can be helpful for developing future algorithms.

9.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201251

RESUMO

BACKGROUND: In patients with soft-tissue sarcomas, tumor grading constitutes a decisive factor to determine the best treatment decision. Tumor grading is obtained by pathological work-up after focal biopsies. Deep learning (DL)-based imaging analysis may pose an alternative way to characterize STS tissue. In this work, we sought to non-invasively differentiate tumor grading into low-grade (G1) and high-grade (G2/G3) STS using DL techniques based on MR-imaging. METHODS: Contrast-enhanced T1-weighted fat-saturated (T1FSGd) MRI sequences and fat-saturated T2-weighted (T2FS) sequences were collected from two independent retrospective cohorts (training: 148 patients, testing: 158 patients). Tumor grading was determined following the French Federation of Cancer Centers Sarcoma Group in pre-therapeutic biopsies. DL models were developed using transfer learning based on the DenseNet 161 architecture. RESULTS: The T1FSGd and T2FS-based DL models achieved area under the receiver operator characteristic curve (AUC) values of 0.75 and 0.76 on the test cohort, respectively. T1FSGd achieved the best F1-score of all models (0.90). The T2FS-based DL model was able to significantly risk-stratify for overall survival. Attention maps revealed relevant features within the tumor volume and in border regions. CONCLUSIONS: MRI-based DL models are capable of predicting tumor grading with good reproducibility in external validation.

10.
Neuroradiology ; 63(11): 1831-1851, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835238

RESUMO

PURPOSE: Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. METHODS: To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II-IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. RESULTS: The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. CONCLUSION: 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.


Assuntos
Glioma , Prótons , Encéfalo , Estudos de Viabilidade , Glioma/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
11.
Cancers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668879

RESUMO

The purpose of this study was to analyze size and growth dynamics of focal lesions (FL) as well as to quantify diffuse infiltration (DI) in untreated smoldering multiple myeloma (SMM) patients and correlate those MRI features with timepoint and cause of progression. We investigated 199 whole-body magnetic resonance imaging (wb-MRI) scans originating from longitudinal imaging of 60 SMM patients and 39 computed tomography (CT) scans for corresponding osteolytic lesions (OL) in 17 patients. All FLs >5 mm were manually segmented to quantify volume and growth dynamics, and DI was scored, rating four compartments separately in T1- and fat-saturated T2-weighted images. The majority of patients with at least two FLs showed substantial spatial heterogeneity in growth dynamics. The volume of the largest FL (p = 0.001, c-index 0.72), the speed of growth of the fastest growing FL (p = 0.003, c-index 0.75), the DI score (DIS, p = 0.014, c-index 0.67), and its dynamic over time (DIS dynamic, p < 0.001, c-index 0.67) all significantly correlated with the time to progression. Size and growth dynamics of FLs correlated significantly with presence/appearance of OL in CT within 2 years after the respective MRI assessment (p = 0.016 and p = 0.022). DIS correlated with decrease of hemoglobin (p < 0.001). In conclusion, size and growth dynamics of FLs correlate with prognosis and local bone destruction. Connections between MRI findings and progression patterns (fast growing FL-OL; DIS-hemoglobin decrease) might enable more precise diagnostic and therapeutic approaches for SMM patients in the future.

12.
Front Neurosci ; 15: 752780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035351

RESUMO

A multitude of image-based machine learning segmentation and classification algorithms has recently been proposed, offering diagnostic decision support for the identification and characterization of glioma, Covid-19 and many other diseases. Even though these algorithms often outperform human experts in segmentation tasks, their limited reliability, and in particular the inability to detect failure cases, has hindered translation into clinical practice. To address this major shortcoming, we propose an unsupervised quality estimation method for segmentation ensembles. Our primitive solution examines discord in binary segmentation maps to automatically flag segmentation results that are particularly error-prone and therefore require special assessment by human readers. We validate our method both on segmentation of brain glioma in multi-modal magnetic resonance - and of lung lesions in computer tomography images. Additionally, our method provides an adaptive prioritization mechanism to maximize efficacy in use of human expert time by enabling radiologists to focus on the most difficult, yet important cases while maintaining full diagnostic autonomy. Our method offers an intuitive and reliable uncertainty estimation from segmentation ensembles and thereby closes an important gap toward successful translation of automatic segmentation into clinical routine.

13.
Nat Commun ; 11(1): 5626, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159057

RESUMO

Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine) and the skeleton in less than a second, orders of magnitude faster than prior algorithms. AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of human experts. We exemplify direct applicability for biomedical research for localizing cancer metastases. Furthermore, we show that expert annotations are subject to human error and bias. As a consequence, we show that at least two independently created annotations are needed to assess model performance. Importantly, AIMOS addresses the issue of human bias by identifying the regions where humans are most likely to disagree, and thereby localizes and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in many areas of biomedical research.


Assuntos
Estruturas Animais/diagnóstico por imagem , Aprendizado Profundo , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Processamento de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem , Imagem Corporal Total , Microtomografia por Raio-X
14.
Cancers (Basel) ; 12(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906608

RESUMO

The purpose of this study was to assess how different MRI protocols (spinal vs. spinal plus pelvic vs. whole-body (wb)-MRI) affect staging in patients with smoldering multiple myeloma (SMM), according to the SLiM-CRAB-criterion '>1 focal lesion (FL) in MRI'. In this retrospective study, a baseline cohort of 147 SMM patients with wb-MRI at initial diagnosis was investigated, including prognostic data regarding development of CRAB-criteria. Fifty-two patients formed a follow-up cohort with a median of three wb-MRIs. The locations of all FLs were determined and it was calculated how staging decisions regarding the criterion '>1 FL in MRI' would have been made if only a limited anatomic area (spine vs. spine plus pelvis) would have been covered by the MRI protocol. Furthermore, subgroups of patients selected by different cutoff-protocol-combinations were compared regarding their prognosis for development of CRAB-criteria. With an MRI protocol limited to spine/spine plus pelvis, only 28%/64% of patients who actually had >1 FL in wb-MRI would have been rated correctly as having '>1 FL in MRI'. Fifty-four percent/36% of patients with exactly 1 FL in spine/spine plus pelvis revealed >1 FL when the entire wb-MRI was analyzed. During follow-up, four more patients developed >1 FL in wb-MRI; both limited MRI protocols would have detected only one of these four patients as having >1 FL at the correct timepoint. Having >1 FL in spine/in spine plus pelvis/in the whole body was associated with a 43%/57%/49% probability of developing CRAB-criteria within 2 years. Patients with >3 FL in spine plus pelvis and patients with >4 FL in the whole body had an 80% probability to develop CRAB-criteria within 2 years. MRI protocols limited to the spine or to spine plus pelvis lead to substantial underdiagnoses of patients who actually have >1 FL in wb-MRI at baseline and during follow-up, which influences staging and treatment decisions according to the current SLiM-CRAB criteria. However, given the spatial distribution of FLs and the analysis on clinical course of patients indicates that the cutoff for the number of FLs should be adopted according to the MRI protocol when using MRI for staging in SMM.

15.
Front Neurosci ; 14: 125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410929

RESUMO

Despite great advances in brain tumor segmentation and clear clinical need, translation of state-of-the-art computational methods into clinical routine and scientific practice remains a major challenge. Several factors impede successful implementations, including data standardization and preprocessing. However, these steps are pivotal for the deployment of state-of-the-art image segmentation algorithms. To overcome these issues, we present BraTS Toolkit. BraTS Toolkit is a holistic approach to brain tumor segmentation and consists of three components: First, the BraTS Preprocessor facilitates data standardization and preprocessing for researchers and clinicians alike. It covers the entire image analysis workflow prior to tumor segmentation, from image conversion and registration to brain extraction. Second, BraTS Segmentor enables orchestration of BraTS brain tumor segmentation algorithms for generation of fully-automated segmentations. Finally, Brats Fusionator can combine the resulting candidate segmentations into consensus segmentations using fusion methods such as majority voting and iterative SIMPLE fusion. The capabilities of our tools are illustrated with a practical example to enable easy translation to clinical and scientific practice.

16.
Cancers (Basel) ; 12(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456049

RESUMO

Imaging techniques such as computed tomographies (CT) play a major role in clinical imaging and diagnosis of malignant lesions. In recent years, metal nanoparticle platforms enabled effective payload delivery for several imaging techniques. Due to the possibility of surface modification, metal nanoparticles are predestined to facilitate molecular tumor targeting. In this work, we demonstrate the feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody functionalized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging. Membrane-associated Hsp70 is exclusively presented on the plasma membrane of malignant cells of multiple tumor entities but not on corresponding normal cells, predestining this target for a tumor-selective in vivo imaging. In vitro microscopic analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell lines after internalization via the endo-lysosomal pathway. In preclinical models, the biodistribution as well as the intratumoral enrichment of AuNPs were examined 24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis, histological analysis confirmed the presence of AuNPs within tumor cells. In contrast to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected selectively inside tumor cells in different tumor mouse models. Furthermore, a machine-learning approach was developed to analyze AuNP accumulations in tumor tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic imaging techniques and spectral-CT-based tumor delineation in vivo.

17.
Radiother Oncol ; 138: 166-172, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302391

RESUMO

PURPOSE: Glioblastoma is routinely treated by concomitant radiochemotherapy. Current target definition guidelines use anatomic MRI (magnetic resonance imaging) scans, taking into account contrast enhancement and the rather unspecific hyperintensity on the fluid-attenuated inversion recovery (FLAIR) sequence. METHODS AND MATERIALS: We applied deep learning based free water correction of diffusion tensor imaging (DTI) scans to estimate the infiltrative gross tumor volume (iGTV) inside of the FLAIR hyperintense region. We analyzed the resulting iGTVs and their impact on target volume definition in a retrospective cohort of 33 GBM patients. RESULTS: iGTVs were significantly smaller compared to standard pre- and post-operative gross tumor volume (GTV) definitions. Two novel infiltrative tumor GTVs (nGTVPRE-OP and nGTVPOST-OP) defined as the conjunction volume of the standard GTV and the iGTV showed only a moderate increase in size compared to standard GTV definitions. On postoperative scans, the iGTV was predominantly covered by the two clinical target volume (CTV) concepts CTVEORTC and CTVROTG1. A novel infiltrative tumor CTV (nCTV) [nGTVPOST-OP + 2 cm margin] was significantly smaller compared to CTVROTG1 but larger than CTVEORTC. The overlap volume and conformity index demonstrated a distinct spatial configuration of the nCTV. Tumor recurrences overlapped with the iGTV in all but one patients and were completely covered by the nCTV in all patients. After reducing the margin to 1 cm recurrences coverage was at least in-field in all patients. CONCLUSION: To conclude, free water corrected DTI scans may help to define infiltrative tumor areas of GBM that could ultimately be used to individualize RT treatment planning in terms of dose sparing or dose escalation.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Aprendizado Profundo , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão/métodos , Feminino , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Medicina de Precisão/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos
18.
Magn Reson Med ; 81(6): 3427-3439, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30652361

RESUMO

PURPOSE: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. METHODS: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. RESULTS: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). CONCLUSION: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Gotículas Lipídicas/química , Processamento de Sinais Assistido por Computador , Tecido Adiposo/diagnóstico por imagem , Adulto , Medula Óssea/diagnóstico por imagem , Simulação por Computador , Humanos , Tamanho da Partícula , Imagens de Fantasmas , Tíbia/diagnóstico por imagem
19.
Adv Exp Med Biol ; 1072: 189-194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30178344

RESUMO

Tumor hypoxia is a major factor inducing resistance to radiotherapy. Spatial limitation in oxygen (O2) diffusion usually leads to chronic hypoxia, whereas temporary shut-down of perfusion or fluctuations in red blood cell flux can cause acute hypoxia. Since the role of temporal heterogeneity of pO2 in acute hypoxia during radiotherapy remains unclear, this study focuses on analyzing the influence of temporal heterogeneity of tumor hypoxia upon radiotherapy by modeling the temporal variance of acute hypoxia. The computational simulation was conducted on digital 2D tumor phantoms. The O2 diffusion and consumption within the tumor tissues were calculated using the reaction-diffusion equation. A total of nine experimental tumor lines (FaDu, GL, C3H, RIF, SCCVII, KHT, MEF, MTG, HT29) were modeled according to known pO2 distributions. Each tumor line was first simulated 36 times with various temporal heterogeneities (dynamic hypoxia) and once again without temporal heterogeneity (static hypoxia). Temporal pO2 fluctuations were modeled according to known red blood cell (RBC) fluxes. All tumor phantoms were irradiated with 30 fractions of 2 Gy. Cell survival was calculated as a function of pO2 and radiation dose via linear quadratic model. The simulation results indicate that the temporal heterogeneity varies with different tumor types, and tumor line HT29 shows the most significant impact of temporal heterogeneity upon the treatment effect. The ratio between the surviving fractions without and with temporal variance ranges from 1.44 to 6.28. Given the same mean pO2, the fraction of killed tumor cells in dynamic hypoxia is higher than in static hypoxia. A temporal heterogeneity index (THI) denoting normalized average pO2 temporal variance is proposed. The results show that for similar mean tumor pO2, a strong inverse correlation between THI and the surviving fraction is observed for each tumor line. THI is highly proportional to the fraction of acute hypoxia and to the RBC flux. The proposed THI corresponds well to the fraction of acute hypoxia.


Assuntos
Neoplasias Experimentais/patologia , Tolerância a Radiação/fisiologia , Hipóxia Tumoral/fisiologia , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Neoplasias Experimentais/radioterapia
20.
Oncotarget ; 9(38): 25254-25264, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861868

RESUMO

The purpose of this study was to improve risk stratification of smoldering multiple myeloma patients, introducing new 3D-volumetry based imaging biomarkers derived from whole-body MRI. Two-hundred twenty whole-body MRIs from 63 patients with smoldering multiple myeloma were retrospectively analyzed and all focal lesions >5mm were manually segmented for volume quantification. The imaging biomarkers total tumor volume, speed of growth (development of the total tumor volume over time), number of focal lesions, development of the number of focal lesions over time and the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group were compared, taking 2-year progression rate, sensitivity and false positive rate into account. Speed of growth, using a cutoff of 114mm3/month, was able to isolate a high-risk group with a 2-year progression rate of 82.5%. Additionally, it showed by far the highest sensitivity in this study and in comparison to other biomarkers in the literature, detecting 63.2% of patients who progress within 2 years. Furthermore, its false positive rate (8.7%) was much lower compared to the recent imaging biomarker '>1 focal lesion' of the International Myeloma Working Group. Therefore, speed of growth is the preferable imaging biomarker for risk stratification of smoldering multiple myeloma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA