Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thorax ; 76(1): 73-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214245

RESUMO

INTRODUCTION: Fibroblastic foci represent the cardinal pathogenic lesion in idiopathic pulmonary fibrosis (IPF) and comprise activated fibroblasts and myofibroblasts, the key effector cells responsible for dysregulated extracellular matrix deposition in multiple fibrotic conditions. The aim of this study was to define the major transcriptional programmes involved in fibrogenesis in IPF by profiling unmanipulated myofibroblasts within fibrotic foci in situ by laser capture microdissection. METHODS: The challenges associated with deriving gene calls from low amounts of RNA and the absence of a meaningful comparator cell type were overcome by adopting novel data mining strategies and by using weighted gene co-expression network analysis (WGCNA), as well as an eigengene-based approach to identify transcriptional signatures, which correlate with fibrillar collagen gene expression. RESULTS: WGCNA identified prominent clusters of genes associated with cell cycle, inflammation/differentiation, translation and cytoskeleton/cell adhesion. Collagen eigengene analysis revealed that transforming growth factor ß1 (TGF-ß1), RhoA kinase and the TSC2/RHEB axis formed major signalling clusters associated with collagen gene expression. Functional studies using CRISPR-Cas9 gene-edited cells demonstrated a key role for the TSC2/RHEB axis in regulating TGF-ß1-induced mechanistic target of rapamycin complex 1 activation and collagen I deposition in mesenchymal cells reflecting IPF and other disease settings, including cancer-associated fibroblasts. CONCLUSION: These data provide strong support for the human tissue-based and bioinformatics approaches adopted to identify critical transcriptional nodes associated with the key pathogenic cell responsible for fibrogenesis in situ and further identify the TSC2/RHEB axis as a potential novel target for interfering with excessive matrix deposition in IPF and other fibrotic conditions.


Assuntos
Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , RNA/genética , Transcriptoma/genética , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Transdução de Sinais , Regulação para Cima
2.
Nat Commun ; 11(1): 4659, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938936

RESUMO

The αvß6 integrin plays a key role in the activation of transforming growth factor-ß (TGFß), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvß6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvß6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFß signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvß6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvß6, induces prolonged inhibition of TGFß signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


Assuntos
Butiratos/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Integrinas/antagonistas & inibidores , Naftiridinas/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Administração por Inalação , Animais , Antígenos de Neoplasias/metabolismo , Bleomicina/toxicidade , Butiratos/administração & dosagem , Butiratos/metabolismo , Butiratos/farmacocinética , Colágeno/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Integrinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Naftiridinas/administração & dosagem , Naftiridinas/metabolismo , Naftiridinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirrolidinas/administração & dosagem , Pirrolidinas/metabolismo , Pirrolidinas/farmacocinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Fator de Crescimento Transformador beta/metabolismo , Pesquisa Translacional Biomédica
3.
Proc Natl Acad Sci U S A ; 117(2): 1139-1147, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879343

RESUMO

Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinß1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.


Assuntos
Proteínas CLOCK/antagonistas & inibidores , Relógios Circadianos/fisiologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Proteínas CLOCK/genética , Proteínas CLOCK/uso terapêutico , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fibrose Pulmonar Idiopática , Integrinas , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Transcriptoma
4.
Sci Signal ; 12(582)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113850

RESUMO

The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-ß1 (TGF-ß1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-ß1-induced ATF4 production depended on cooperation between canonical TGF-ß1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-ß1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Colágeno/biossíntese , Glicina/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina/biossíntese , Fator de Crescimento Transformador beta1/farmacologia , Fator 4 Ativador da Transcrição/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765508

RESUMO

Phosphatidylinositol 3-kinases (PI3Ks) and mammalian target of rapamycin (mTOR) play a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Omipalisib (GSK2126458) is a potent inhibitor of PI3K/mTOR.A randomised, placebo-controlled, double-blind, repeat dose escalation, experimental medicine study of omipalisib in subjects with IPF was conducted (NCT01725139) to test safety, tolerability, pharmacokinetics and pharmacodynamics. Omipalisib was dosed at 0.25 mg, 1 mg and 2 mg twice daily for 8 days in four cohorts of four subjects randomised 3:1 to receive omipalisib or placebo (two cohorts received 2 mg twice daily).17 subjects with IPF were enrolled. The most common adverse event was diarrhoea, which was reported by four participants. Dose-related increases in insulin and glucose were observed. Pharmacokinetic analysis demonstrated that exposure in the blood predicts lung exposure. Exposure-dependent inhibition of phosphatidylinositol 3,4,5 trisphosphate and pAKT confirmed target engagement in blood and lungs. 18F-2-fluoro-2-deoxy-d-glucose(FDG)-positron emission tomography/computed tomography scans revealed an exposure-dependent reduction in 18F-FDG uptake in fibrotic areas of the lung, as measured by target-to-background, ratio thus confirming pharmacodynamic activity.This experimental medicine study demonstrates acceptable tolerability of omipalisib in subjects with IPF at exposures for which target engagement was confirmed both systemically and in the lungs.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Quinolinas/administração & dosagem , Sulfonamidas/administração & dosagem , Administração Oral , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Fluordesoxiglucose F18 , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Piridazinas , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento
6.
Nat Commun ; 10(1): 6, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602778

RESUMO

Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-ß1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colágeno/biossíntese , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoproteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Fibrose Pulmonar Idiopática/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
8.
Thorax ; 71(8): 701-11, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27103349

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. METHODS: We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. RESULTS: We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. CONCLUSIONS: Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-of-mechanism trial of this agent is currently underway. TRIAL REGISTRATION NUMBER: NCT01725139, pre-clinical.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Sulfonamidas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proliferação de Células , Ensaios Clínicos como Assunto , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Piridazinas , Transdução de Sinais , Resultado do Tratamento
9.
Dis Model Mech ; 8(9): 1129-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138704

RESUMO

TGFß-ALK5 pro-fibrotic signalling and herpesvirus infections have been implicated in the pathogenesis and exacerbation of pulmonary fibrosis. In this study we addressed the role of TGFß-ALK5 signalling during the progression of fibrosis in a two-hit mouse model of murine γ-herpesvirus 68 (MHV-68) infection on the background of pre-existing bleomycin-induced pulmonary fibrosis. Assessment of total lung collagen levels in combination with ex vivo micro-computed tomography (µCT) analysis of whole lungs demonstrated that MHV-68 infection did not enhance lung collagen deposition in this two-hit model but led to a persistent and exacerbated inflammatory response. Moreover, µCT reconstruction and analysis of the two-hit model revealed distinguishing features of diffuse ground-glass opacities and consolidation superimposed on pre-existing fibrosis that were reminiscent of those observed in acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). Virally-infected murine fibrotic lungs further displayed evidence of extensive inflammatory cell infiltration and increased levels of CCL2, TNFα, IL-1ß and IL-10. Blockade of TGFß-ALK5 signalling attenuated lung collagen accumulation in bleomycin-alone injured mice, but this anti-fibrotic effect was reduced in the presence of concomitant viral infection. In contrast, inhibition of TGFß-ALK5 signalling in virally-infected fibrotic lungs was associated with reduced inflammatory cell aggregates and increased levels of the antiviral cytokine IFNγ. These data reveal newly identified intricacies for the TGFß-ALK5 signalling axis in experimental lung fibrosis, with different outcomes in response to ALK5 inhibition depending on the presence of viral infection. These findings raise important considerations for the targeting of TGFß signalling responses in the context of pulmonary fibrosis.


Assuntos
Regulação da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Bleomicina/efeitos adversos , Quimiocina CCL2/metabolismo , Colágeno/química , Colágeno/metabolismo , Modelos Animais de Doenças , Herpesviridae , Infecções por Herpesviridae/complicações , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/complicações , Inflamação , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Microtomografia por Raio-X
10.
Ann Am Thorac Soc ; 12 Suppl 1: S16-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25830828

RESUMO

The challenge facing many fibrotic lung diseases is that these conditions usually present late, often after several decades of repetitive alveolar epithelial injury, during which functional alveolar units are gradually obliterated and replaced with nonfunctional connective tissue. The resulting fibrosis is often progressive and, in the case of idiopathic pulmonary fibrosis (IPF), invariably leads to respiratory insufficiency and, ultimately, the premature death of affected individuals. Recent years have seen a greater appreciation of the relative importance of chronic inflammation as a driver of fibrotic responses. Current evidence suggests that IPF arises as a result of repetitive epithelial injury and a highly aberrant wound healing response in genetically susceptible and aged individuals. Nonspecific anti-inflammatory agents offer no clinical benefit, but the potential contribution of maladaptive immune responses in determining outcome is gaining increasing recognition. The importance of key differences in the tissue-regenerative potential in young versus aged individuals is also beginning to be more fully appreciated. Moreover, there is considerable overlap in the mechanisms underlying tissue repair and cancer, and patients with IPF are at heightened risk of developing lung cancer. Progressive fibrosis and cancer may therefore represent the extremes of a highly dysregulated tissue injury response. This brief review focuses on some of this evidence and on our current understanding of abnormal tissue repair responses after chronic epithelial injury in the specific context of IPF.


Assuntos
Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/fisiopatologia , Alvéolos Pulmonares/fisiopatologia , Humanos , Lesão Pulmonar/terapia , Miofibroblastos/citologia , Transdução de Sinais
11.
Am J Respir Cell Mol Biol ; 50(1): 144-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23972264

RESUMO

PAR1 plays a central role in mediating the interplay between coagulation and inflammation, but its role in regulating acute neutrophilic inflammation is unknown. We report that antagonism of PAR1 was highly effective at reducing acute neutrophil accumulation in a mouse model of LPS-induced lung inflammation. PAR1 antagonism also reduced alveolar-capillary barrier disruption in these mice. This protection was associated with a reduction in the expression of the chemokines, CCL2 and CCL7, but not the proinflammatory cytokines, TNF and IL-6, or the classic neutrophil chemoattractants, CXCL1 and CXCL2. Antibody neutralization of CCL2 and CCL7 significantly reduced LPS-induced total leukocyte and neutrophil accumulation, recovered from the bronchoalveolar lavage fluid of challenged mice. Immunohistochemical analysis revealed that CCL2 predominantly localized to alveolar macrophages and pulmonary epithelial cells, whereas CCL7 was restricted to the pulmonary epithelium. In keeping with these observations, the intranasal administration of recombinant CCL2 (rCCL2) and rCCL7 led to the accumulation of neutrophils within the lung airspaces of naive mice in the absence of any underlying inflammation. Flow cytometry analysis further demonstrated an increase in Ly6G(hi) neutrophils expressing the chemokine receptors, CCR1 and CCR2, isolated from mouse lungs compared with circulating neutrophils. Conversely, the expression of CXCR2 decreased on neutrophils isolated from the lung compared with circulating neutrophils. Furthermore, this switch in chemokine receptor expression was accentuated after acute LPS-induced lung inflammation. Collectively, these findings reveal a novel role for PAR1 and the chemokines, CCL2 and CCL7, during the early events of acute neutrophilic inflammation.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Neutrófilos/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Receptor PAR-1/metabolismo , Animais , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8B/metabolismo
13.
J Cell Physiol ; 227(11): 3575-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22278285

RESUMO

Proteinase-activated receptors (PARs) are crucial in orchestrating cellular responses to coagulation proteinases, such as thrombin and FXa. Four PARs have been characterized and have been shown to be differentially expressed in mice and humans and between tissues. We have previously shown that in murine lung fibroblasts, PAR-1 is solely responsible for all cellular responses to thrombin and FXa. In contrast, we report here that in primary human lung fibroblasts (pHLFs), known PARs fail to account for all of the cellular responses to thrombin, in particular in the presence of high, but physiologically achievable concentrations of thrombin. We report that pHLFs secrete CCL2 in a PAR-1-dependent manner at low thrombin concentration (∼0.3 nM). At or above 10 nM thrombin, pharmacological antagonism (RWJ-58259) fails to block thrombin-induced CCL2 release; whereas PAR-1 cleavage-blocking monoclonal antibodies (ATAP2 and WEDE15) only partially inhibit thrombin-induced CCL2 secretion. In addition, activation of PAR-3, PAR-4, and transactivation of either PAR-2 or EGFR were ruled out as being responsible for thrombin-mediated CCL2 secretion at high yet standard concentrations of the proteinase. We further provide evidence that PAR-1-dependent and PAR-independent signaling involves the rapid phosphorylation of ERK, which in turn is absolutely required for thrombin-induced CCL2 secretion at both low and standard concentration of the proteinase. Our findings suggest the existence of a PAR-independent signaling mechanism in human lung fibroblasts and have important implications for the design of therapeutic strategies aimed at blocking pro-inflammatory signaling responses associated with excessive thrombin generation.


Assuntos
Quimiocina CCL2/metabolismo , Inflamação/metabolismo , Receptor PAR-1 , Trombina/metabolismo , Células Cultivadas , Receptores ErbB/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Pulmão/citologia , Sistema de Sinalização das MAP Quinases , Fosforilação , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombina/administração & dosagem , Ureia/análogos & derivados , Ureia/farmacologia
14.
Am J Respir Crit Care Med ; 182(1): 73-82, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20203246

RESUMO

RATIONALE: Patients with idiopathic pulmonary fibrosis (IPF), a progressive disease with a dismal prognosis, exhibit an unexplained disparity of increased alveolar epithelial cell (AEC) apoptosis but reduced fibroblast apoptosis. OBJECTIVES: To examine whether the failure of patients with IPF to up-regulate cyclooxygenase (COX)-2, and thus the antifibrotic mediator prostaglandin (PG)E(2), accounts for this imbalance. METHODS: Fibroblasts and primary type II AECs were isolated from control and fibrotic human lung tissue. The effects of COX-2 inhibition and exogenous PGE(2) on fibroblast and AEC sensitivity to Fas ligand (FasL)-induced apoptosis were assessed. MEASUREMENTS AND MAIN RESULTS: IPF lung fibroblasts are resistant to FasL-induced apoptosis compared with control lung fibroblasts. Inhibition of COX-2 in control lung fibroblasts resulted in an apoptosis-resistant phenotype. Administration of PGE(2) almost doubled the rate of FasL-induced apoptosis in fibrotic lung fibroblasts compared with FasL alone. Conversely, in primary fibrotic lung type II AECs, PGE(2) protected against FasL-induced apoptosis. In human control and, to a greater extent, fibrotic lung fibroblasts, PGE(2) inhibits the phosphorylation of Akt, suggesting that regulation of this prosurvival protein kinase is an important mechanism by which PGE(2) modulates cellular apoptotic responses. CONCLUSIONS: The observation that PGE(2) deficiency results in increased AEC but reduced fibroblast sensitivity to apoptosis provides a novel pathogenic insight into the mechanisms driving persistent fibroproliferation in IPF.


Assuntos
Apoptose/fisiologia , Ciclo-Oxigenase 2/fisiologia , Dinoprostona/fisiologia , Fibroblastos/fisiologia , Fibrose Pulmonar Idiopática/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alvéolos Pulmonares/fisiologia , Cicatrização/fisiologia
15.
J Clin Invest ; 119(9): 2550-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19652365

RESUMO

Uncontrolled activation of the coagulation cascade contributes to the pathophysiology of several conditions, including acute and chronic lung diseases. Coagulation zymogens are considered to be largely derived from the circulation and locally activated in response to tissue injury and microvascular leak. Here we report that expression of coagulation factor X (FX) is locally increased in human and murine fibrotic lung tissue, with marked immunostaining associated with bronchial and alveolar epithelia. FXa was a potent inducer of the myofibroblast differentiation program in cultured primary human adult lung fibroblasts via TGF-beta activation that was mediated by proteinase-activated receptor-1 (PAR1) and integrin alphavbeta5. PAR1, alphavbeta5, and alpha-SMA colocalized to fibrotic foci in lung biopsy specimens from individuals with idiopathic pulmonary fibrosis. Moreover, we demonstrated a causal link between FXa and fibrosis development by showing that a direct FXa inhibitor attenuated bleomycin-induced pulmonary fibrosis in mice. These data support what we believe to be a novel pathogenetic mechanism by which FXa, a central proteinase of the coagulation cascade, is locally expressed and drives the fibrotic response to lung injury. These findings herald a shift in our understanding of the origins of excessive procoagulant activity and place PAR1 central to the cross-talk between local procoagulant signaling and tissue remodeling.


Assuntos
Fator Xa/metabolismo , Lesão Pulmonar/metabolismo , Fibrose Pulmonar/metabolismo , Actinas/metabolismo , Adulto , Idoso , Animais , Sequência de Bases , Bleomicina/toxicidade , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Fator Xa/genética , Inibidores do Fator Xa , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Fibrose Pulmonar/sangue , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor PAR-1/metabolismo , Receptores de Vitronectina/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
16.
Am J Respir Crit Care Med ; 179(5): 414-25, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19060230

RESUMO

RATIONALE: Studies in patients and experimental animals provide compelling evidence of the involvement of the major thrombin receptor, proteinase-activated receptor-1 (PAR(1)), and the potent chemokine, chemokine (CC motif) ligand-2 (CCL2)/monocyte chemotactic protein-1, in the pathogenesis of idiopathic pulmonary fibrosis (IPF). PAR(1) knockout mice are protected from bleomycin-induced lung inflammation and fibrosis and this protection is associated with marked attenuation in CCL2 induction. OBJECTIVES: The aim of this study was to determine which cell types represent the major source of PAR(1)-inducible CCL2 in the fibrotic lung. METHODS: Using immunohistochemistry and dual immunofluorescence, we examined PAR(1) and CCL2 expression in the bleomycin model and human IPF lung. PAR(1) and CCL2 gene expression was also assessed in laser-captured alveolar septae from patients with IPF. The ability of PAR(1) to induce CCL2 production by lung epithelial cells was also examined in vitro. MEASUREMENTS AND MAIN RESULTS: We report for the first time that PAR(1) and CCL2 are coexpressed and co-up-regulated on the activated epithelium in fibrotic areas in IPF. Similar observations were found in bleomycin-induced lung injury. Furthermore, we show that thrombin is a potent inducer of CCL2 gene expression and protein release by cultured lung epithelial cells via a PAR(1)-dependent mechanism. CONCLUSIONS: These data support the notion that PAR(1) activation on lung epithelial cells may represent an important mechanism leading to increased local CCL2 release in pulmonary fibrosis. Targeting PAR(1) on the pulmonary epithelium may offer a unique opportunity for therapeutic intervention in pulmonary fibrosis and other inflammatory and fibroproliferative conditions associated with excessive local generation of thrombin and CCL2 release.


Assuntos
Quimiocina CCL2/metabolismo , Fibrose Pulmonar/metabolismo , Receptor PAR-1/metabolismo , Sequência de Aminoácidos , Animais , Bleomicina , Estudos de Casos e Controles , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor PAR-1/biossíntese , Receptor PAR-1/genética , Receptores CCR2/metabolismo , Trombina/farmacologia
17.
Mol Biol Cell ; 19(6): 2520-33, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353977

RESUMO

Uncontrolled activation of the coagulation cascade after tissue injury has been implicated in both inflammation and tissue fibrosis. Thrombin exerts pluripotent cellular effects via its high-affinity receptor, proteinase-activated receptor-1 (PAR(1)) and signaling via Galpha(i/o), Galpha(q), or Galpha(12/13). Activation of PAR(1) on fibroblasts, a key effector cell in fibrosis, results in the induction of several mediators, including the potent monocyte and fibrocyte chemoattractant CCL2. The aim of this study was to identify the G protein and signaling pathway involved in PAR(1)-mediated CCL2 production and release. Using a novel PAR(1) antagonist that blocks the interaction between PAR(1) and Galpha(q), we report for the first time that PAR(1) coupling to Galpha(q) is essential for thrombin-induced CCL2 gene expression and protein release in murine lung fibroblasts. We further demonstrate that these effects are mediated via the cooperation between ERK1/2 and Rho kinase signaling pathways: a calcium-independent protein kinase C (PKC), c-Raf, and ERK1/2 pathway was found to mediate PAR(1)-induced CCL2 gene transcription, whereas a phospholipase C, calcium-dependent PKC, and Rho kinase pathway influences CCL2 protein release. We propose that targeting the interaction between PAR(1) and Galpha(q) may allow us to selectively interfere with PAR(1) proinflammatory and profibrotic signaling, while preserving the essential role of other PAR(1)-mediated cellular responses.


Assuntos
Quimiocina CCL2/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/enzimologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptor PAR-1/metabolismo , Trombina/farmacologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Quimiocina CCL2/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Pulmão/citologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
18.
Ann N Y Acad Sci ; 1096: 86-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17405919

RESUMO

The proteinase-activated receptors (PAR1 to 4) represent important novel therapeutic targets in fibroproliferative lung disorders, linking signals from coagulation proteinases to the production of proinflammatory and profibrotic mediators, in response to lung injury. This review focuses on the current understanding of cytokine and chemokine release downstream of PAR1 activation in the context of fibroproliferative lung disease, with an emphasis on the induction of the chemokine CCL2/MCP-1.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação , Lesão Pulmonar , Pulmão/patologia , Receptor PAR-1/metabolismo , Transdução de Sinais , Animais , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Fibrose , Camundongos , Modelos Biológicos , Peptídeos/química , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA