Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Nat Commun ; 13(1): 6437, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307482

RESUMO

Library adaptors are short oligonucleotides that are attached to RNA and DNA samples in preparation for next-generation sequencing (NGS). Adaptors can also include additional functional elements, such as sample indexes and unique molecular identifiers, to improve library analysis. Here, we describe Control Library Adaptors, termed CAPTORs, that measure the accuracy and reliability of NGS. CAPTORs can be integrated within the library preparation of RNA and DNA samples, and their encoded information is retrieved during sequencing. We show how CAPTORs can measure the accuracy of nanopore sequencing, evaluate the quantitative performance of metagenomic and RNA sequencing, and improve normalisation between samples. CAPTORs can also be customised for clinical diagnoses, correcting systematic sequencing errors and improving the diagnosis of pathogenic BRCA1/2 variants in breast cancer. CAPTORs are a simple and effective method to increase the accuracy and reliability of NGS, enabling comparisons between samples, reagents and laboratories, and supporting the use of nanopore sequencing for clinical diagnosis.


Assuntos
Sequenciamento por Nanoporos , Reprodutibilidade dos Testes , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA
3.
Genet Med ; 24(2): 398-409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906448

RESUMO

PURPOSE: Branchpoint elements are required for intron removal, and variants at these elements can result in aberrant splicing. We aimed to assess the value of branchpoint annotations generated from recent large-scale studies to select branchpoint-abrogating variants, using hereditary cancer genes as model. METHODS: We identified branchpoint elements in 119 genes associated with hereditary cancer from 3 genome-wide experimentally-inferred and 2 predicted branchpoint data sets. We then identified variants that occur within branchpoint elements from public databases. We compared conservation, unique variant observations, and population frequencies at different nucleotides within branchpoint motifs. Finally, selected minigene assays were performed to assess the splicing effect of variants at branchpoint elements within mismatch repair genes. RESULTS: There was poor overlap between predicted and experimentally-inferred branchpoints. Our analysis of cancer genes suggested that variants at -2 nucleotide, -1 nucleotide, and branchpoint positions in experimentally-inferred canonical motifs are more likely to be clinically relevant. Minigene assay data showed the -2 nucleotide to be more important to branchpoint motif integrity but also showed fluidity in branchpoint usage. CONCLUSION: Data from cancer gene analysis suggest that there are few high-risk alleles that severely impact function via branchpoint abrogation. Results of this study inform a general scheme to prioritize branchpoint motif variants for further study.


Assuntos
Neoplasias , Splicing de RNA , Genes Neoplásicos , Humanos , Íntrons/genética , Neoplasias/genética , Splicing de RNA/genética
5.
Genome Biol ; 22(1): 146, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971925

RESUMO

Pseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.


Assuntos
DNA Complementar/genética , Pseudogenes , Análise de Sequência de DNA , Transcriptoma/genética , Linhagem Celular , Deleção de Genes , Haploidia , Humanos , Regiões Promotoras Genéticas/genética
6.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059783

RESUMO

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Assuntos
Autoanticorpos/genética , Doenças Autoimunes/genética , Linfócitos B/imunologia , Linfoma/genética , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Transporte/genética , Evolução Clonal/genética , Evolução Clonal/imunologia , Ciclina D3/genética , Guanilato Ciclase/genética , Humanos , Proteínas Imediatamente Precoces/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Inibidoras de Diferenciação/genética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J/genética
7.
Nat Protoc ; 14(7): 2119-2151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217595

RESUMO

Next-generation sequencing (NGS) has been widely adopted to identify genetic variants and investigate their association with disease. However, the analysis of sequencing data remains challenging because of the complexity of human genetic variation and confounding errors introduced during library preparation, sequencing and analysis. We have developed a set of synthetic DNA spike-ins-termed 'sequins' (sequencing spike-ins)-that are directly added to DNA samples before library preparation. Sequins can be used to measure technical biases and to act as internal quantitative and qualitative controls throughout the sequencing workflow. This step-by-step protocol explains the use of sequins for both whole-genome and targeted sequencing of the human genome. This includes instructions regarding the dilution and addition of sequins to human DNA samples, followed by the bioinformatic steps required to separate sequin- and sample-derived sequencing reads and to evaluate the diagnostic performance of the assay. These practical guidelines are accompanied by a broader discussion of the conceptual and statistical principles that underpin the design of sequin standards. This protocol is suitable for users with standard laboratory and bioinformatic experience. The laboratory steps require ~1-4 d and the bioinformatic steps (which can be performed with the provided example data files) take an additional day.


Assuntos
DNA/síntese química , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Calibragem , Biologia Computacional/métodos , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Células K562 , Células MCF-7 , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética
8.
Prostate ; 79(10): 1191-1196, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090091

RESUMO

BACKGROUND: The androgen-regulated gene TMPRSS2 to the ETS transcription factor gene ERG fusion is the most common genomic alteration acquired during prostate tumorigenesis and biased toward men of European ancestry. In contrast, African American men present with more advanced disease, yet their tumors are less likely to acquire TMPRSS2-ERG. Data for Africa is scarce. METHODS: RNA was made available for genomic analyses from 181 prostate tissue biopsy cores from Black South African men, 94 with and 87 without pathological evidence for prostate cancer. Reverse transcription polymerase chain reaction was used to screen for the TMPRSS2-ERG fusion, while transcript junction coordinates and isoform frequencies, including novel gene fusions, were determined using targeted RNA sequencing. RESULTS: Here we report a frequency of 13% for TMPRSS2-ERG in tumors from Black South Africans. Present in 12/94 positive versus 1/87 cancer negative prostate tissue cores, this suggests a 92.62% predictivity for a positive cancer diagnosis (P = 0.0031). At a frequency of almost half that reported for African Americans and roughly a quarter of that reported for men of European ancestry, acquisition of TMPRSS2-ERG appears to be inversely associated with aggressive prostate cancer. Further support was provided by linking the presence of TMPRSS2-ERG to low-grade disease in younger patients (P = 0.0466), with higher expressing distal ERG fusion junction coordinates. CONCLUSIONS: Only the second study of its kind for the African continent, we support a link between TMPRSS2-ERG status and prostate cancer racial health disparity beyond the borders of the United States. We call for urgent evaluation of androgen deprivation therapy within Africa.


Assuntos
Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Serina Endopeptidases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , População Negra , Instabilidade Genômica , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Neoplasias da Próstata/patologia , África do Sul , Regulador Transcricional ERG/genética , População Branca
9.
Nat Commun ; 10(1): 1342, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902988

RESUMO

Chirality is a property describing any object that is inequivalent to its mirror image. Due to its 5'-3' directionality, a DNA sequence is distinct from a mirrored sequence arranged in reverse nucleotide-order, and is therefore chiral. A given sequence and its opposing chiral partner sequence share many properties, such as nucleotide composition and sequence entropy. Here we demonstrate that chiral DNA sequence pairs also perform equivalently during molecular and bioinformatic techniques that underpin genetic analysis, including PCR amplification, hybridization, whole-genome, target-enriched and nanopore sequencing, sequence alignment and variant detection. Given these shared properties, synthetic DNA sequences mirroring clinically relevant or analytically challenging regions of the human genome are ideal controls for clinical genomics. The addition of synthetic chiral sequences (sequins) to patient tumor samples can prevent false-positive and false-negative mutation detection to improve diagnosis. Accordingly, we propose that sequins can fulfill the need for commutable internal controls in precision medicine.


Assuntos
DNA/genética , Genômica , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites/genética , Mutação/genética , Nanoporos , Neoplasias/genética , Reação em Cadeia da Polimerase , Alinhamento de Sequência
10.
Nat Commun ; 10(1): 1388, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918253

RESUMO

Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform clinical action, but current molecular diagnostic assays are restricted in resolution and throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these limitations. First, we establish that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. Finally, we show that targeted RNAseq offers additional advantages by simultaneously measuring gene expression levels and profiling the immune-receptor repertoire. We anticipate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use will provide a deeper understanding of fusion gene biology.


Assuntos
Fusão Gênica/genética , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/genética , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/diagnóstico , Fusão Oncogênica/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32914017

RESUMO

PURPOSE: Before anaplastic lymphoma kinase (ALK) inhibitors, treatment options for ALK-positive inflammatory myofibroblastic tumors (AP-IMTs) were unsatisfactory. We retrospectively analyzed the outcome of patients with AP-IMT treated with crizotinib to document response, toxicity, survival, and features associated with relapse. METHODS: The cohort comprised eight patients with AP-IMT treated with crizotinib and surgery. Outcome measures were progression-free and overall survival after commencing crizotinib, treatment-related toxicities, features associated with relapse, outcome after relapse, and outcome after ceasing crizotinib. RESULTS: The median follow-up after commencing crizotinib was 3 years (range, 0.9 to 5.5 years). The major toxicity was neutropenia. All patients responded to crizotinib. Five were able to discontinue therapy without recurrence (median treatment duration, 1 year; range, 0.2 to 3.0 years); one continues on crizotinib. Two critically ill patients with initial complete response experienced relapse while on therapy. Both harbored RANBP2-ALK fusions and responded to alternative ALK inhibitors; one ultimately died as a result of progressive disease, whereas the other remains alive on treatment. Progression-free and overall survival since commencement of crizotinib is 0.75 ± 0.15% and 0.83 ± 0.15%, respectively. CONCLUSION: We confirm acceptable toxicity and excellent disease control in patients with AP-IMT treated with crizotinib, which may be ceased without recurrence in most. Relapses occurred in two of three patients with RANBP2-ALK translocated IMT, which suggests that such patients require additional therapy.

12.
Cancer Res ; 77(16): 4279-4292, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28634201

RESUMO

Despite intensive multimodal treatment of sarcomas, a heterogeneous group of malignant tumors arising from connective tissue, survival remains poor. Candidate-based targeted treatments have demonstrated limited clinical success, urging an unbiased and comprehensive analysis of oncogenic signaling networks to reveal therapeutic targets and personalized treatment strategies. Here we applied mass spectrometry-based phosphoproteomic profiling to the largest and most heterogeneous set of sarcoma cell lines characterized to date and identified novel tyrosine phosphorylation patterns, enhanced tyrosine kinases in specific subtypes, and potential driver kinases. ALK was identified as a novel driver in the Aska-SS synovial sarcoma (SS) cell line via expression of an ALK variant with a large extracellular domain deletion (ALKΔ2-17). Functional ALK dependency was confirmed in vitro and in vivo with selective inhibitors. Importantly, ALK immunopositivity was detected in 6 of 43 (14%) of SS patient specimens, one of which exhibited an ALK rearrangement. High PDGFRα phosphorylation also characterized SS cell lines, which was accompanied by enhanced MET activation in Yamato-SS cells. Although Yamato-SS cells were sensitive to crizotinib (ALK/MET-inhibitor) but not pazopanib (VEGFR/PDGFR-inhibitor) monotherapy in vitro, synergistic effects were observed upon drug combination. In vivo, both drugs were individually effective, with pazopanib efficacy likely attributable to reduced angiogenesis. MET or PDGFRα expression was detected in 58% and 84% of SS patients, respectively, with coexpression in 56%. Consequently, our integrated approach has led to the identification of ALK and MET as promising therapeutic targets in SS. Cancer Res; 77(16); 4279-92. ©2017 AACR.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sarcoma Sinovial/tratamento farmacológico , Sarcoma Sinovial/enzimologia , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Crizotinibe , Feminino , Humanos , Indazóis , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Fosforilação , Proteômica , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Sarcoma Sinovial/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Methods ; 13(9): 792-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502218

RESUMO

RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome.


Assuntos
Perfilação da Expressão Gênica/normas , Genes Sintéticos , Splicing de RNA , RNA Mensageiro/genética , Análise de Sequência de RNA/normas , Cromossomos Artificiais , Humanos , Controle de Qualidade , Splicing de RNA/genética , RNA Mensageiro/síntese química , RNA Mensageiro/química , Padrões de Referência , Análise de Sequência de RNA/métodos
14.
Genome Res ; 25(2): 290-303, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25561518

RESUMO

During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.


Assuntos
Sequência Consenso , Genômica , Íntrons , Splicing de RNA , Processamento Alternativo , Animais , Biologia Computacional/métodos , Evolução Molecular , Éxons , Variação Genética , Genômica/métodos , Humanos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA
15.
Cell Cycle ; 10(17): 2904-16, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857155

RESUMO

Mammalian mitochondrial DNA is transcribed as precursor polycistronic transcripts containing 13 mRNAs, 2 rRNAs, punctuated by 22 tRNAs. The mechanisms involved in the excision of mitochondrial tRNAs from these polycistronic transcripts have remained largely unknown. We have investigated the roles of ELAC2, mitochondrial RNase P proteins 1 and 3, and pentatricopeptide repeat domain protein 1 in the processing of mitochondrial polycistronic transcripts. We used a deep sequencing approach to characterize the 5' and 3' ends of processed mitochondrial transcripts and provide a detailed map of mitochondrial tRNA processing sites affected by these proteins. We show that MRPP1 and MRPP3 process the 5' ends of tRNAs and the 5' unconventional, non tRNA containing site of the CO1 transcript. By contrast, we find that ELAC2 and PTCD1 affect the 3' end processing of tRNAs. Finally, we found that MRPP1 is essential for transcript processing, RNA modification, translation and mitochondrial respiration.


Assuntos
Mitocôndrias/genética , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Ribonuclease P/metabolismo , Northern Blotting , Respiração Celular , Citoplasma/genética , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Genes Mitocondriais , Células HeLa , Humanos , Immunoblotting , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , RNA/genética , RNA Mitocondrial , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease P/genética , Análise de Sequência de RNA , Transfecção
16.
RNA ; 17(5): 878-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21460236

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly recognized to play major regulatory roles in development and disease. To identify novel regulators in breast biology, we identified differentially regulated lncRNAs during mouse mammary development. Among the highest and most differentially expressed was a transcript (Zfas1) antisense to the 5' end of the protein-coding gene Znfx1. In vivo, Zfas1 RNA is localized within the ducts and alveoli of the mammary gland. Zfas1 intronically hosts three previously undescribed C/D box snoRNAs (SNORDs): Snord12, Snord12b, and Snord12c. In contrast to the general assumption that noncoding SNORD-host transcripts function only as vehicles to generate snoRNAs, knockdown of Zfas1 in a mammary epithelial cell line resulted in increased cellular proliferation and differentiation, while not substantially altering the levels of the SNORDs. In support of an independent function, we also found that Zfas1 is extremely stable, with a half-life >16 h. Expression analysis of the SNORDs revealed these were expressed at different levels, likely a result of distinct structures conferring differential stability. While there is relatively low primary sequence conservation between Zfas1 and its syntenic human ortholog ZFAS1, their predicted secondary structures have similar features. Like Zfas1, ZFAS1 is highly expressed in the mammary gland and is down-regulated in breast tumors compared to normal tissue. We propose a functional role for Zfas1/ ZFAS1 in the regulation of alveolar development and epithelial cell differentiation in the mammary gland, which, together with its dysregulation in human breast cancer, suggests ZFAS1 as a putative tumor suppressor gene.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Processamento Alternativo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Camundongos , RNA Nucleolar Pequeno/genética , RNA não Traduzido , Transcrição Gênica , beta Catenina/metabolismo
17.
RNA ; 16(6): 1156-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20406994

RESUMO

In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3-ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense-antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3' untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5' and 3' rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5' RACE and analyses of deep sequencing data from LNCaP cells treated +/-androgens revealed six high-confidence sense-antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense-antisense chimeric transcription.


Assuntos
DNA Antissenso/genética , Variação Genética , Calicreínas/genética , Neoplasias da Próstata/genética , Transcrição Gênica , Antígenos de Neoplasias/genética , Quimera/genética , Mapeamento Cromossômico , DNA de Neoplasias/genética , Éxons , Rearranjo Gênico , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Neoplasias da Próstata/patologia , Proteínas Elk-4 do Domínio ets/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA