Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Chem Biol Interact ; 398: 111117, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906501

RESUMO

Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anti-Helmínticos , Leite , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Masculino , Leite/química , Leite/metabolismo , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/metabolismo , Anti-Helmínticos/sangue , Camundongos Knockout , Distribuição Tecidual , Espectrometria de Massas em Tandem
2.
Environ Toxicol Pharmacol ; 107: 104421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493880

RESUMO

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Leite , Tiabendazol , Animais , Feminino , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lactação , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tiabendazol/química , Tiabendazol/metabolismo , Xenobióticos , Cães
3.
Toxicol Lett ; 380: 23-30, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011773

RESUMO

ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.


Assuntos
Praguicidas , Masculino , Feminino , Animais , Ovinos , Humanos , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Praguicidas/toxicidade , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carneiro Doméstico/metabolismo , Proteínas de Neoplasias/metabolismo
4.
Antimicrob Agents Chemother ; 67(5): e0009523, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37078871

RESUMO

Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk. The aim of this work was to determine the role of ABC transporter G2 (ABCG2) in clorsulon secretion into milk and the effect of ivermectin, a known ABCG2 inhibitor, on this process. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we report that clorsulon was transported in vitro by both transporter variants and that ivermectin inhibited its transport mediated by murine Abcg2 and human ABCG2. Wild-type and Abcg2-/- lactating female mice were used to carry out in vivo assays. The milk concentration and the milk-to-plasma ratio were higher in wild-type mice than in Abcg2-/- mice after clorsulon administration, showing that clorsulon is actively secreted into milk by Abcg2. The interaction of ivermectin in this process was shown after the coadministration of clorsulon and ivermectin to wild-type and Abcg2-/- lactating female mice. Treatment with ivermectin had no effect on the plasma concentrations of clorsulon, but the milk concentrations and milk-to-plasma ratios of clorsulon decreased in comparison to those with treatment without ivermectin, only in wild-type animals. Consequently, the coadministration of clorsulon and ivermectin reduces clorsulon secretion into milk due to drug-drug interactions mediated by ABCG2.


Assuntos
Anti-Helmínticos , Animais , Feminino , Humanos , Camundongos , Anti-Helmínticos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ivermectina/farmacologia , Lactação , Proteínas de Neoplasias/genética
5.
Antimicrob Agents Chemother ; 66(7): e0006222, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736132

RESUMO

Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.


Assuntos
Albendazol , Anti-Helmínticos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Albendazol/farmacologia , Animais , Anti-Helmínticos/farmacologia , Feminino , Humanos , Lactação , Mamíferos , Camundongos , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
Chem Biol Interact ; 345: 109537, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34062171

RESUMO

The Breast Cancer Resistance Protein (BCRP/ABCG2) is an ATP-binding cassette efflux transporter that is expressed in the apical membrane of cells from relevant tissues involved in drug pharmacokinetics such as liver, intestine, kidney, testis, brain and mammary gland, among others. Tolfenamic acid is an anti-inflammatory drug used as an analgesic and antipyretic in humans and animals. Recently, tolfenamic acid has been repurposed as an antitumoral drug and for use in chronic human diseases such as Alzheimer. The aim of this work was to study whether tolfenamic acid is an in vitro Abcg2 substrate, and to investigate the potential role of Abcg2 in plasma exposure, secretion into milk and tissue accumulation of this drug. Using in vitro transepithelial assays with cells transduced with Abcg2, we showed that tolfenamic acid is an in vitro substrate of Abcg2. The in vivo effect of this transporter was tested using wild-type and Abcg2-/- mice, showing that after oral and intravenous administration of tolfenamic acid, its area under the plasma concentration-time curve in Abcg2-/- mice was between 1.7 and 1.8-fold higher compared to wild-type mice. Abcg2-/- mice also showed higher liver and testis accumulation of tolfenamic acid after intravenous administration. In this study, we demonstrate that tolfenamic acid is transported in vitro by Abcg2 and that its plasma levels as well as its tissue distribution are affected by Abcg2, with potential pharmacological and toxicological consequences.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Vacinas Bacterianas/sangue , Vacinas Bacterianas/farmacocinética , ortoaminobenzoatos/sangue , ortoaminobenzoatos/farmacocinética , Animais , Vacinas Bacterianas/farmacologia , Transporte Biológico , Camundongos , Distribuição Tecidual , ortoaminobenzoatos/farmacologia
7.
Biochem Pharmacol ; 175: 113924, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217099

RESUMO

ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 µg·h/ml versus 73.80 ± 10.00 µg·h/ml). Differences in meloxicam distribution were reported for several tissues after oral and intravenous administration, with a 20-fold higher concentration in the brain of Abcg2-/- after oral administration. Meloxicam secretion into milk was also affected by the transporter, with a 2-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice after oral and intravenous administration. We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Anti-Inflamatórios não Esteroides/metabolismo , Meloxicam/metabolismo , Leite/metabolismo , Distribuição Tecidual/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Administração Intravenosa , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Masculino , Meloxicam/administração & dosagem , Meloxicam/sangue , Camundongos , Camundongos Knockout , Leite/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
8.
Nutrients ; 11(10)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590349

RESUMO

A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.


Assuntos
Contaminação de Alimentos , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Leite/metabolismo , Valor Nutritivo , Preparações Farmacêuticas/metabolismo , Animais , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica , Humanos , Lactação/genética , Proteínas de Membrana Transportadoras/genética , Leite/efeitos adversos , Leite Humano/metabolismo , Polimorfismo Genético , Medição de Risco
9.
Food Funct ; 9(1): 636-642, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29292449

RESUMO

Lignans are dietary polyphenols, which are metabolized by gut microbiota into the phytoestrogenic metabolites enterolignans, mainly enterolactone and enterodiol. Breast Cancer Resistance Protein (BCRP/ABCG2) is an efflux transporter that affects the plasma and milk secretion of several drugs and natural compounds. We hypothesized here that Abcg2 could influence the levels of lignans and their derived metabolites in target tissues. Consequently, we aimed to evaluate the role of Abcg2 in the tissue distribution of these compounds. We used Abcg2-/- knockout and wild-type male mice fed with a lignan-enriched diet for one week and analysed their plasma, small intestine, colon, liver, kidneys and testicles. High levels of lignans as well as enterolignans and their glucuronide and sulfate conjugates in the small intestine and colon were detected, with higher concentrations of the conjugates in the wild-type compared with Abcg2-/- mice. Particularly relevant was the detection of 24-fold and 8-fold higher concentrations of enterolactone-sulfate and enterolactone-glucuronide, respectively, in the kidney of Abcg2-/- compared with wild-type mice. In conclusion, our study showed that lignans and their derived metabolites were in vivo substrates of Abcg2, which affected their plasma and tissue levels. These results highlight the role of Abcg2 in influencing the health-beneficial properties of dietary lignans.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Linho/metabolismo , Lignanas/metabolismo , Extratos Vegetais/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Linho/química , Lignanas/química , Masculino , Camundongos , Camundongos Knockout , Extratos Vegetais/química , Distribuição Tecidual
10.
J Biol Chem ; 291(40): 20962-20975, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27502274

RESUMO

It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.


Assuntos
Dineínas/química , Dineínas/metabolismo , Multimerização Proteica/fisiologia , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dineínas/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Ressonância Magnética Nuclear Biomolecular , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
11.
Drug Metab Pers Ther ; 30(4): 251-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26444365

RESUMO

BACKGROUND: The aqueous ethanolic extract from leaves of the marine plant Thalassia testudinum has shown antioxidant, cytoprotective, and neuroprotective properties. The chemical composition of this extract, rich in polyphenols, could interfere with active transport of drugs out of the cell and circumvent the phenomenon of multidrug resistance (MDR). The extract can act as an MDR modulator through its interaction with efflux transporters. The ABCG2/BCRP has been shown to confer MDR acting in tumor cells. METHODS: To evaluate the interaction of ABCG2/BCRP with the extract, studies in cells overexpressing human BCRP transporter and its murine ortholog Bcrp1 were performed. RESULTS AND CONCLUSIONS: T. testudinum extract could be included as MDR modulator, as interaction with ABCG2/BCRP has been shown through flow cytometry and MTT assays. The cells overexpressing ABCG2/BCRP in the presence of the extract (25-150 µg/mL) decreased the survival rates of the anti-tumoral mitoxantrone. Our results support its inclusion as a possible MDR modulator against tumor cells that overexpress ABCG2/BCRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Interações Ervas-Drogas/fisiologia , Hydrocharitaceae , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Dicetopiperazinas/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Dose Letal Mediana , Camundongos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Extratos Vegetais/farmacologia , Folhas de Planta
12.
Mol Pharm ; 12(11): 4026-37, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26372856

RESUMO

Colocalized in membrane barriers, the ABC transporters ABCB1 and ABCG2 strongly contribute to multidrug resistance (MDR). Here we investigate the as yet unknown mechanisms of activation and inhibition of ABCG2. For this purpose we measured the ATPase activity of ABCG2 and ABCB1 as a function of allocrite concentration using a calibration set of 30 diverse compounds and a validation set of 23 compounds. We demonstrate that ABCG2 is activated at low and inhibited at high allocrite concentrations, yielding bell-shaped activity curves. With an ATP regeneration assay we prove that the inhibitory part is indeed due to a decrease in activity because of high allocrite load in the transporter. However, inhibition is only observed if the membrane solubility of allocrites is sufficiently high. The concentrations of half-maximum activation and inhibition are at least 10-fold lower for ABCG2 than for ABCB1. Because ABCG2 binds its allocrites with higher affinity than ABCB1, it can extract hydrophilic, nonamphiphilic, and highly charged compounds out of the lipid membrane, typically exhibiting low lipid-water partition coefficients, but is inhibited by hydrophobic, amphiphilic, and moderately charged compounds, with high lipid-water partition coefficients. In contrast, ABCB1 is barely interacting with hydrophilic compounds, but is activated by hydrophobic compounds. We show that hydrophobicity, amphiphilicity, and charge have a dual role; they predict, on the one hand, allocrites' lipid-water partition coefficient and, on the other hand, the transporters' preference for the chemical nature of allocrites. Parameters reflecting hydrophobicity, amphiphilicity, and charge are therefore sufficient for differentiating between allocrites, activators, and inhibitors of ABCB1 and ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Proteínas de Neoplasias/química , Preparações Farmacêuticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo
13.
Biochemistry ; 54(40): 6195-206, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26381710

RESUMO

The ATP binding cassette (ABC) transporters ABCG2 and ABCB1 perform ATP hydrolysis-dependent efflux of structurally highly diverse compounds, collectively called allocrites. Whereas much is known about allocrite-ABCB1 interactions, the chemical nature and strength of ABCG2-allocrite interactions have not yet been assessed. We quantified and characterized interactions of allocrite with ABCG2 and ABCB1 using a set of 39 diverse compounds. We also investigated potential allocrite binding sites based on available transporter structures and structural models. We demonstrate that ABCG2 binds its allocrites from the lipid membrane, despite their hydrophilicity. Hence, binding of allocrite to both transporters is a two-step process, starting with a lipid-water partitioning step, driven mainly by hydrophobic interactions, followed by a transporter binding step in the lipid membrane. We show that binding of allocrite to both transporters increases with the number of hydrogen bond acceptors in allocrites. Scrutinizing the transporter translocation pathways revealed ample hydrogen bond donors for allocrite binding. Importantly, the hydrogen bond donor strength is, on average, higher in ABCG2 than in ABCB1, which explains the higher measured affinity of allocrite for ABCG2. π-π stacking and π-cation interactions play additional roles in binding of allocrite to ABCG2 and ABCB1. With this analysis, we demonstrate that these membrane-mediated weak electrostatic interactions between transporters and allocrites allow for transporter promiscuity toward allocrites. The different sensitivities of the transporters to allocrites' charge and amphiphilicity provide transporter specificity. In addition, we show that the different hydrogen bond donor strengths in the two transporters allow for affinity tuning.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Linhagem Celular , Humanos , Ligação de Hidrogênio , Hidrólise , Camundongos , Modelos Moleculares , Proteínas de Neoplasias/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Conformação Proteica , Termodinâmica
14.
FEBS J ; 282(20): 3945-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26227614

RESUMO

It has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT. After narrowing down the binding site of RagA to DYNLT we could identify that a ß strand, part of the RagA G3 box involved in nucleotide binding, mediates this association. Interestingly, we show that both microtubule-associated DYNLT and cytoplasmic DYNLT are equally able to bind to the small GTPases Rab3D and RagA. Using NMR spectroscopy, we analysed the binding of dynein intermediate chain and RagA to mammalian DYNLT. Our experiments identify residues of DYNLT affected by dynein intermediate chain binding and residues affected by RagA binding, hence distinguishing the docking site for each of them. In summary, our results shed light on the mechanisms adopted by DYNLT when binding to protein cargoes that become transported alongside microtubules bound to the dynein motor.


Assuntos
Citoplasma/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Citoplasma/enzimologia , Dineínas do Citoplasma/química , Dineínas do Citoplasma/genética , Dimerização , Dineínas/química , Dineínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microtúbulos/enzimologia , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas rab3 de Ligação ao GTP/química , Proteínas rab3 de Ligação ao GTP/genética
15.
Pharmacol Res ; 87: 87-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993496

RESUMO

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested - even those able to enter the CNS in vivo - were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Amidoidrolases/antagonistas & inibidores , Canabinoides/farmacologia , Carbamatos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Amidoidrolases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/química , Carbamatos/química , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Relação Estrutura-Atividade
16.
Drug Metab Dispos ; 42(5): 943-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24568887

RESUMO

Lignans are phytoestrogens that are metabolized by the gut microbiota to enterodiol and enterolactone, the main biologically active enterolignans. Substantial interindividual variation in plasma concentration and urinary excretion of enterolignans has been reported, this being determined, at least in part, by the intake of lignan precursors, the gut microbiota, and the host's phase 2 conjugating enzyme activity. However, the role of ATP-binding cassette (ABC) transporters in the transport and disposition of enterolactone has not been reported so far. Active transport assays using parental and Madin-Darby canine kidney epithelial cells transduced with murine and human ABCG2 showed a significant increase in apically directed translocation of enterolactone in transduced cells, which was confirmed by using the selective ABCG2 inhibitor Ko143. In addition, enterolactone also inhibited transport of the antineoplastic agent mitoxantrone as a model substrate, with inhibition percentages of almost 40% at 200 µM for human ABCG2. Furthermore, the endogenous levels in plasma and milk of enterolactone in wild-type and Abcg2((-/-)) knockout female mice were analyzed. The milk/plasma ratio decreased significantly in the Abcg2((-/-)) phenotype, as compared with the wild-type mouse group (0.4 ± 0.1 as against 6.4 ± 2.6). This paper is the first to report that enterolactone is a transported substrate and therefore most probably a competitive inhibitor of ABCG2, which suggests it has a role in the interindividual variations in the disposition of enterolactone and its secretion into milk. The inhibitory activity identified provides a solid basis for further investigation in possible food-drug interactions.


Assuntos
4-Butirolactona/análogos & derivados , Transportadores de Cassetes de Ligação de ATP/fisiologia , Lignanas/farmacocinética , Leite/química , Proteínas de Neoplasias/fisiologia , 4-Butirolactona/sangue , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transporte Biológico , Dicetopiperazinas , Cães , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis , Lignanas/sangue , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Mitoxantrona/metabolismo , Mitoxantrona/farmacocinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Especificidade por Substrato
17.
Vet J ; 198(2): 429-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23981352

RESUMO

ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP) mediates drug-drug interactions that affect the secretion of drugs into milk. The aims of this study were: (1) to determine whether the major plasma metabolites of the flukicide triclabendazole (TCBZ), triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO2), inhibit ovine and bovine ABCG2 and its Y581S variant in vitro, and (2) to examine whether coadministration of TCBZ with the ABCG2 substrates danofloxacin (a fluoroquinolone) and moxidectin (a milbemycin) affects the secretion of these drugs into the milk of sheep. TCBZSO and TCBZSO2 inhibited ruminant ABCG2 in vitro by reversing the reduced mitoxantrone accumulation and reducing basal to apical transport of nitrofurantoin in cells transduced with bovine variants (S581 and Y581) and the ovine variant of ABCG2. Coadministration of TCBZ with moxidectin or danofloxacin to sheep resulted in significantly reduced levels of moxidectin, but not danofloxacin, in the milk of TCBZ-treated sheep compared to sheep administered moxidectin or danofloxacin alone. The milk area under concentration time curve (AUC 0-48 h) was 2.99±1.41 µg h/mL in the group treated with TCBZ and moxidectin, and 7.75±3.58 µg h/mL in the group treated with moxidectin alone. The AUC (0-48 h) milk/plasma ratio was 37% lower in the group treated with TCBZ and moxidectin (7.34±1.51) than in the group treated with moxidectin alone (11.68±3.61). TCBZ metabolites appear to inhibit ruminant ABCG2 and affect the secretion of ABCG2 substrates into milk of sheep.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antiplatelmínticos/farmacocinética , Leite/química , Carneiro Doméstico/genética , Carneiro Doméstico/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antiplatelmínticos/sangue , Benzimidazóis/sangue , Benzimidazóis/farmacocinética , Bovinos , Cromatografia Líquida de Alta Pressão/veterinária , Cães , Combinação de Medicamentos , Feminino , Fluoroquinolonas/sangue , Fluoroquinolonas/farmacocinética , Lactação , Macrolídeos/sangue , Macrolídeos/farmacocinética , Células Madin Darby de Rim Canino , Sulfóxidos/sangue , Sulfóxidos/farmacocinética , Triclabendazol
18.
J Agric Food Chem ; 61(18): 4352-9, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23586460

RESUMO

The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP. Parental and Bcrp1-transduced MDCKII cells were used for active transport assays. Uro-A and, to a lesser extent, Uro-A sulfate showed a significant increase in apically directed translocation in Bcrp1-transduced cells. Bcrp1 did not show affinity for the rest of the tested compounds. Data were confirmed for murine, human, bovine, and ovine BCRP-transduced subclones as well as with the use of the selective BCRP inhibitor Ko143. The transport inhibition by Uro-A was analyzed by flow cytometry compared to Ko143 using the antineoplastic agent mitoxantrone as a model substrate. Results showed that Uro-A was able to inhibit mitoxantrone transport in a dose-dependent manner. This study reports for the first time that Uro-A and its sulfate conjugate are ABCG2/BCRP substrates. The results suggest that physiologically relevant concentrations of these gut microbiota-derived metabolites could modulate ABCG2/BCRP-mediated transport processes and mechanisms of cancer drug resistance. Further in vivo investigations are warranted.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cumarínicos/farmacologia , Ácido Elágico/metabolismo , Microbiota , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Bovinos , Linhagem Celular Tumoral , Dicetopiperazinas , Cães , Feminino , Glucuronídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Taninos Hidrolisáveis/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/genética , Ovinos , Sulfatos/metabolismo
19.
Vet J ; 196(2): 203-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23083838

RESUMO

Danofloxacin is a synthetic fluoroquinolone antibacterial agent and a substrate for ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP). This protein actively extrudes drugs from cells in the intestine, liver, kidney, and other organs, such as the mammary gland. The purpose of this study was to determine whether genistein and daidzein, isoflavones present in soy and known inhibitors of ABCG2, could diminish danofloxacin secretion into milk. The results obtained from BCRP-transduced MDCK-II cells (Mardin-Darby canine kidney) showed that both isoflavones efficiently inhibited the in vitro transport of the drug. In addition, danofloxacin transport into milk was studied in Assaf sheep. The experimental design with ewes (n = 18) included ewes fed with standard forage, soy-enriched forage for 15 days prior to the experiment or standard forage paired with orally administered exogenous genistein and daidzein. The danofloxacin levels in the milk of ewes in the soy-enriched diet group were decreased. The area under concentration-time curve AUC (0-24 h) was 9.3 ± 4.6 vs. 16.58 ± 4.44 µgh/mL in the standard forage or control group. The plasma levels of danofloxacin were unmodified. The AUC (0-24 h) milk/plasma ratio decreased by over 50% in the soy-enriched diet group, compared to the control group (4.90 ± 2.65 vs. 9.58 ± 2.17). Exogenous administration of isoflavones did not modify danofloxacin secretion into milk. This study showed that milk excretion of a specific substrate of BCRP, such as danofloxacin, can be diminished by the presence of isoflavones in the diet.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Fluoroquinolonas/farmacocinética , Genisteína/farmacocinética , Isoflavonas/farmacocinética , Leite/química , Ovinos/sangue , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ração Animal , Animais , Antibacterianos/sangue , Antibacterianos/farmacocinética , Área Sob a Curva , Linhagem Celular , Cães , Interações Medicamentosas , Fluoroquinolonas/sangue , Regulação da Expressão Gênica , Genisteína/administração & dosagem , Genisteína/farmacologia , Meia-Vida , Humanos , Isoflavonas/administração & dosagem , Isoflavonas/farmacologia , Glycine max
20.
Drug Metab Dispos ; 41(3): 546-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23230133

RESUMO

The bovine adenosine triphosphate-binding cassette transporter G2 (ABCG2/breast cancer resistance protein) polymorphism Tyr581Ser (Y581S) has recently been shown to increase in vitro transepithelial transport of antibiotics. Since this transporter has been extensively related to the active secretion of drugs into milk, the potential in vivo effect of this polymorphism on secretion of xenobiotics in livestock could have striking consequences for milk production, the dairy industry, and public health. Our purpose was to study the in vivo effect of this polymorphism on the secretion of danofloxacin, a widely used veterinary antibiotic, into milk. Danofloxacin (1.25 mg/kg) was administered to six Y/Y 581 homozygous and six Y/S 581 heterozygous lactating cows, and plasma and milk samples were collected and analyzed by high-performance liquid chromatography. No differences were found in the pharmacokinetic parameters of danofloxacin in plasma between the two groups of animals. In contrast, Y/S heterozygous cows showed a 2-fold increase in danofloxacin levels in milk. In addition, the pharmacokinetic elimination parameters, mean residence time and elimination half-life, were significantly lower in the milk of the animals carrying the Y/S polymorphism. These in vivo results are in agreement with our previously published in vitro data, which showed a greater capacity of the S581 variant in accumulation assays, and demonstrate, for the first time, an important effect of the Y581S single-nucleotide polymorphism on antibiotic secretion into cow milk. These findings could be extended to other ABCG2 substrates, and may be relevant for the treatment of mastitis and for the design of accurate and novel strategies to handle milk residues.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética , Lactação , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Área Sob a Curva , Bovinos , Cromatografia Líquida de Alta Pressão , Feminino , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/sangue , Contaminação de Alimentos , Meia-Vida , Heterozigoto , Homozigoto , Injeções Intramusculares , Taxa de Depuração Metabólica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA