Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794191

RESUMO

Gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers and is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake and/or metabolic instability observed for most reported GRPR-targeted radioligands might limit their clinical applications. Our group recently reported a GRPR-targeted antagonist tracer, [68Ga]Ga-TacsBOMB2 ([68Ga]Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13ψThz14-NH2), which showed a minimal pancreas uptake in a preclinical mouse model. In this study, we synthesized four derivatives with unnatural amino acid substitutions (Tle10-derived Ga-LW01158, NMe-His12-derived Ga-LW01160, α-Me-Trp8- and Tle10-derived Ga-LW01186, and Tle10- and N-Me-Gly11-derived Ga-LW02002) and evaluated their potential for detecting GRPR-expressing tumors with positron emission tomography (PET). The binding affinities (Ki(GRPR)) of Ga-LW01158, Ga-LW01160, Ga-LW01186, and Ga-LW02002 were 5.11 ± 0.47, 187 ± 17.8, 6.94 ± 0.95, and 11.0 ± 0.39 nM, respectively. [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 enabled clear visualization of subcutaneously implanted human prostate cancer PC-3 tumor xenografts in mice in PET images. Ex vivo biodistribution studies showed that [68Ga]Ga-LW01158 had the highest tumor uptake (11.2 ± 0.65 %ID/g) and good tumor-to-background uptake ratios at 1 h post-injection. Comparable in vivo stabilities were observed for [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 (76.5-80.7% remaining intact in mouse plasma at 15 min post-injection). In summary, the Tle10 substitution, either alone or combined with α-Me-Trp8 or NMe-Gly11 substitution, in Ga-TacsBOMB2 generates derivatives that retained good GRPR binding affinity and in vivo stability. With good tumor uptake and tumor-to-background imaging contrast, [68Ga]Ga-LW01158 is promising for detecting GRPR-expressing lesions with PET.

2.
Front Chem ; 12: 1292566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389726

RESUMO

A comprehensive investigation of the Hg2+ coordination chemistry and 197m/gHg radiolabeling capabilities of cyclen-based commercial chelators, namely, DOTA and DOTAM (aka TCMC), along with their bifunctional counterparts, p-SCN-Bn-DOTA and p-SCN-Bn-TCMC, was conducted to assess the suitability of these frameworks as bifunctional chelators for the 197m/gHg2+ theranostic pair. Radiolabeling studies revealed that TCMC and DOTA exhibited low radiochemical yields (0%-6%), even when subjected to harsh conditions (80°C) and high ligand concentrations (10-4 M). In contrast, p-SCN-Bn-TCMC and p-SCN-Bn-DOTA demonstrated significantly higher 197m/gHg radiochemical yields (100% ± 0.0% and 70.9% ± 1.1%, respectively) under the same conditions. The [197 m/gHg]Hg-p-SCN-Bn-TCMC complex was kinetically inert when challenged against human serum and glutathione. To understand the differences in labeling between the commercial chelators and their bifunctional counterparts, non-radioactive natHg2+ complexes were assessed using NMR spectroscopy and DFT calculations. The NMR spectra of Hg-TCMC and Hg-p-SCN-Bn-TCMC suggested binding of the Hg2+ ion through the cyclen backbone framework. DFT studies indicated that binding of the Hg2+ ion within the backbone forms a thermodynamically stable product. However, competition can form between isothiocyanate binding and binding through the macrocycle, which was experimentally observed. The isothiocyanate bound coordination product was dominant at the radiochemical scale as, in comparison, the macrocycle bound product was seen at the NMR scale, agreeing with the DFT result. Furthermore, a bioconjugate of TCMC (TCMC-PSMA) targeting prostate-specific membrane antigen was synthesized and radiolabeled, resulting in an apparent molar activity of 0.089 MBq/nmol. However, the complex demonstrated significant degradation over 24 h when exposed to human serum and glutathione. Subsequently, cell binding assays were conducted, revealing a Ki value ranging from 19.0 to 19.6 nM. This research provides crucial insight into the effectiveness of current commercial chelators in the context of 197m/gHg2+ radiolabeling. It underscores the necessity for the development of specific and customized chelators to these unique "soft" radiometals to advance 197m/gHg2+ radiopharmaceuticals.

3.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398552

RESUMO

Some bispecific radiotracers have been developed to overcome the limitations of monospecific tracers and improve detection sensitivity for heterogeneous tumor lesions. Here, we aim to synthesize two bispecific tracers targeting prostate-specific membrane antigen (PSMA) and fibroblast activation protein (FAP), which are key markers expressed in prostate cancer. A pyridine-based FAP-targeted ligand was synthesized through multi-step organic synthesis and then connected to the 2-Nal-containing PSMA-targeted motif. The Ki(PSMA) values of Ga-complexed bispecific ligands, Ga-AV01084 and Ga-AV01088, were 11.6 ± 3.25 and 28.7 ± 6.05 nM, respectively, and the IC50(FAP) values of Ga-AV01084 and Ga-AV01088 were 10.9 ± 0.67 and 16.7 ± 1.53 nM, respectively. Both [68Ga]Ga-AV01084 and [68Ga]Ga-AV01088 enabled the visualization of PSMA-expressing LNCaP tumor xenografts and FAP-expressing HEK293T:hFAP tumor xenografts in PET images acquired at 1 h post-injection. However, the tumor uptake values from the bispecific tracers were still lower than those obtained from the monospecific tracers, PSMA-targeted [68Ga]Ga-PSMA-617 and FAP-targeted [68Ga]Ga-AV02070. Further investigations are needed to optimize the selection of linkers and targeted pharmacophores to improve the tumor uptake of bispecific PSMA/FAP tracers for prostate cancer imaging.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Masculino , Humanos , Células HEK293 , Farmacóforo , Compostos Radiofarmacêuticos/metabolismo , Neoplasias da Próstata/patologia , Piridinas , Tomografia por Emissão de Pósitrons , Linhagem Celular Tumoral
4.
Eur J Med Chem ; 268: 116238, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367492

RESUMO

Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. natGa-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of natGa-SB03178 being ∼17 times higher than natGa-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68Ga]Ga-SB04033. 177Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68Ga]Ga-/[177Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.


Assuntos
Carcinoma , Endopeptidases , Proteínas de Membrana , Quinolinas , Humanos , Animais , Camundongos , Radioisótopos de Gálio , Distribuição Tecidual , Células HEK293 , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Quinolinas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Linhagem Celular Tumoral
5.
Chemistry ; 30(19): e202304270, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285527

RESUMO

With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.


Assuntos
Peptídeos Cíclicos , alfa-MSH/análogos & derivados , Cisteína , Indóis
6.
J Med Chem ; 66(19): 13705-13730, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738446

RESUMO

Superior bifunctional chelating ligands, which can sequester both α-emitting radionuclides (225Ac, 213Bi) and their diagnostic companions (155Tb, 111In), remain a formidable challenge to translating targeted alpha therapy, with complementary diagnostic imaging, to the clinic. H4noneupaX, a chelating ligand with an unusual diametrically opposed arrangement of pendant donor groups, has been developed to this end. H4noneunpaX preferentially complexes Ln3+ and An3+ ions, forming thermodynamically stable (pLa = 17.8, pLu = 21.3) and kinetically inert complexes─single isomeric species by nuclear magnetic resonance and density functional theory. Metal binding versatility demonstrated in radiolabeling [111In]In3+, [155Tb]Tb3+, [177Lu]Lu3+, and [225Ac]Ac3+ achieved high molar activities under mild conditions. Efficient, scalable synthesis enabled in vivo evaluation of bifunctional H4noneunpaX conjugated to two octreotate peptides targeting neuroendocrine tumors. Single photon emission computed tomography/CT and biodistribution studies of 155Tb-radiotracers in AR42J tumor-bearing mice showed excellent image contrast, good tumor uptake, and high in vivo stability. H4noneunpaX shows significant potential for theranostic applications involving 225Ac/155Tb or 177Lu/155Tb.

7.
Org Biomol Chem ; 21(40): 8112-8116, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37772608

RESUMO

New somatostatin analogs are highly desirable for diagnosing and treating neuroendocrine tumors (NETs). Here we describe the solid-phase synthesis of a new octreotate (TATE) analog where the disulfide bond is replaced with a tryptathionine (Ttn) staple as part of an effort to prototyping a one-bead-one-compound (OBOC) library of Ttn-stapled peptides. Library design provides the potential for on- and off-bead screening. To validate our method, we labelled Ttn-TATE with a fluorescent dye to demonstrate binding to soluble somatostatin receptor subtype-2 and staining of Ar42J rat prostate cancer cells. By exploring this staple in the context of a ligand of known affinity, this method paves the way for an OBOC library construction of bioactive octreotate analogs and, more broadly speaking, tryptathionine-staped peptide macrocycles.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Masculino , Animais , Técnicas de Química Combinatória/métodos , Peptídeos/química , Biblioteca de Peptídeos
8.
Theranostics ; 13(13): 4559-4573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649602

RESUMO

High kidney and salivary gland uptake is a common feature of prostate-specific membrane antigen (PSMA)-targeted radioligands derived from the lysine-urea-glutamic acid (Lys-urea-Glu) pharmacophore. In this study we investigated if radioligands derived from lysine-urea-2-aminoadipic acid (Lys-urea-Aad), lysine-urea-S-carboxylmethylcysteine (Lys-urea-Cmc) and lysine-urea-O-carboxylmethylserine (Lys-urea-Cms) pharmacophores with/without an albumin binder could retain good PSMA-targeting capability but with minimized kidney and salivary gland uptake. Methods: HTK03177 and HTK03187 were obtained by replacing Aad in the previously reported Lys-urea-Aad-derived HTK03149 with Cmc and Cms, respectively. HTK03170, HTK04048 and HTK04028 were derived from HTK03149, HTK03177 and HTK03187, respectively, with the conjugation of an albumin-binding moiety, 4-(p-methoxyphenyl)butyric acid. In vitro competition binding assays were conducted using PSMA-expressing LNCaP prostate cancer cells and [18F]DCFPyL as the radioligand. Imaging and biodistribution studies of 68Ga-labeled HTK03177 and HTK03187, and 177Lu-labeled HTK03170, HTK04048 and HTK04028 were performed in LNCaP tumor-bearing mice. Radioligand therapy study of [177Lu]Lu-HTK03170 was carried out in LNCaP tumor-bearing mice and [177Lu]Lu-PSMA-617 was used for comparison. Results: The calculated Ki(PSMA) values of Ga-HTK03177, Ga-HTK03187, Lu-HTK03170, Lu-HTK04048 and Lu-HTK04028 were 5.0±2.4, 10.6±2.0, 1.6±0.4, 1.4±1.0 and 13.9±3.2 nM, respectively. PET Imaging and biodistribution studies at 1 h post-injection showed that both [68Ga]Ga-HTK03177 and [68Ga]Ga-HTK03187 had high uptake in LNCaP tumor xenografts (24.7±6.85 and 21.1±3.62 %ID/g, respectively) but minimal uptake in normal organs/tissues including kidneys (7.76±1.00 and 2.83±0.45 %ID/g, respectively) and salivary glands (0.22±0.02 and 0.16±0.02 %ID/g, respectively). SPECT imaging and biodistribution studies showed that the LNCaP tumor uptake of 177Lu-labeled HTK03170, HTK04048 and HTK04028 peaked at 4-24 h post-injection at ~43-65 %ID/g and was relatively sustained over time. Their peaked average uptake in kidneys (≤ 17.4 %ID/g) and salivary glands (≤ 2.92 %ID/g) was lower and continuously reduced over time. Radioligand therapy study showed that compared with [177Lu]Lu-PSMA-617 (37 MBq), a quarter dose of [177Lu]Lu-HTK03170 (9.3 MBq) led to a better median survival (63 vs 90 days). Conclusions: Our data demonstrate that that Lys-urea-Aad, Lys-urea-Cmc and Lys-urea-Cms are promising pharmacophores for the design of PSMA-targeted radioligands especially for radiotherapeutic applications to minimize toxicity to kidneys and salivary glands.


Assuntos
Radioisótopos de Gálio , Lisina , Humanos , Masculino , Animais , Camundongos , Farmacóforo , Distribuição Tecidual , Rim , Albuminas , Ácido Butírico
9.
Pharmaceuticals (Basel) ; 16(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37375746

RESUMO

Fibroblast activation protein (FAP) is a membrane-tethered serine protease overexpressed in the reactive stromal fibroblasts of >90% human carcinomas, which makes it a promising target for developing radiopharmaceuticals for the imaging and therapy of carcinomas. Here, we synthesized two novel (R)-pyrrolidin-2-yl-boronic acid-based FAP-targeted ligands: SB02055 (DOTA-conjugated (R)-(1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)glycyl)pyrrolidin-2-yl)boronic acid) and SB04028 (DOTA-conjugated ((R)-1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)-D-alanyl)pyrrolidin-2-yl)boronic acid). natGa- and 68Ga-complexes of both ligands were evaluated in preclinical studies and compared to previously reported natGa/68Ga-complexed PNT6555. Enzymatic assays showed that FAP binding affinities (IC50) of natGa-SB02055, natGa-SB04028 and natGa-PNT6555 were 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM, respectively. PET imaging and biodistribution studies in HEK293T:hFAP tumor-bearing mice showed that while [68Ga]Ga-SB02055 presented with a nominal tumor uptake (1.08 ± 0.37 %ID/g), [68Ga]Ga-SB04028 demonstrated clear tumor visualization with ~1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) compared to [68Ga]Ga-PNT6555 (6.38 ± 0.45 %ID/g). High accumulation in the bladder indicated renal excretion of all three tracers. [68Ga]Ga-SB04028 displayed a low background level uptake in most normal organs, and comparable to [68Ga]Ga-PNT6555. However, since its tumor uptake was considerably higher than [68Ga]Ga-PNT6555, the corresponding tumor-to-organ uptake ratios for [68Ga]Ga-SB04028 were also significantly greater than [68Ga]Ga-PNT6555. Our data demonstrate that (R)-(((quinoline-4-carbonyl)-d-alanyl)pyrrolidin-2-yl)boronic acid is a promising pharmacophore for the design of FAP-targeted radiopharmaceuticals for cancer imaging and radioligand therapy.

10.
J Nucl Med ; 64(8): 1314-1321, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116917

RESUMO

System [Formula: see text] is an appealing biomarker for targeting oxidative stress with oncologic PET imaging and can serve as an alternative PET biomarker to other metabolic indicators. In this paper, we report a direct comparison of 2 18F-labeled amino acid radiopharmaceuticals targeting system [Formula: see text], [18F]5-fluoroaminosuberic acid ([18F]FASu) and (4S)-4-(3-[18F]fluoropropyl)-l-glutamate ([18F]FSPG), in terms of their uptake specificity and ability to image glioma and lung cancer xenografts in vivo. Methods: Both tracers were synthesized according to previously published procedures. In vitro uptake specificity assays were conducted using prostate (PC-3), glioblastoma (U-87), colorectal (HT-29), ovarian (SKOV3), breast (MDA-MB-231), and lung cancer (A549) cell lines. PET/CT imaging and biodistribution studies were conducted in immunocompromised mice bearing U-87 or A549 xenografts. Results: In vitro cell uptake assays showed that the tracers accumulated in cancer cells in a time-dependent manner and that the uptake of [18F]FASu was blocked by the system [Formula: see text] inhibitor sulfasalazine and rose bengal, but not by system L inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, system [Formula: see text] inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid, or l-serine, which is a substrate for transporter systems A, ACS, B0, and B0,+ Conversely, [18F]FSPG uptake decreased significantly in the presence of an excess of L-trans-pyrrolidine-2,4-dicarboxylic acid in 2 of 3 tested cell lines, indicating some reliance on system [Formula: see text] in these cells. In an in vivo setting, [18F]FASu and [18F]FSPG generated good-contrast PET images in U-87 and A549 tumor-bearing mice. Tracer accumulation in A549 tumors was 5.0 ± 0.8 percentage injected dose (%ID)/g ([18F]FASu, n ≥ 5) and 6.3 ± 1.3 %ID/g ([18F]FSPG, n ≥ 6, P = 0.7786), whereas U-87 xenografts demonstrated uptake of 6.1 ± 2.4 %ID/g ([18F]FASu, n ≥ 4) and 11.2 ± 4.1 %ID/g ([18F]FSPG, n ≥ 4, P = 0.0321) at 1 h after injection. Conclusion: [18F]FSPG had greater in vitro uptake than [18F]FASu in all cell lines tested; however, our results indicate that residual uptake differences exist between [18F]FSPG and [18F]FASu, suggesting alternative transporter activity in the cell lines tested. In vivo studies demonstrated the ability of both [18F]FASu and [18F]FSPG to image glioblastoma (U-87) and non-small cell lung cancer (A549) xenografts.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glioblastoma , Neoplasias Pulmonares , Masculino , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos , Ácido Glutâmico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral
11.
Molecules ; 28(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049918

RESUMO

Terbium radioisotopes (149Tb, 152Tb, 155Tb, 161Tb) offer a unique class of radionuclides which encompass all four medicinally relevant nuclear decay modalities (α, ß+, γ, ß-/e-), and show high potential for the development of element-matched theranostic radiopharmaceuticals. The goal of this study was to design, synthesise, and evaluate the suitability of crown-TATE as a new peptide-conjugate for radiolabelling of [155Tb]Tb3+ and [161Tb]Tb3+, and to assess the imaging and pharmacokinetic properties of each radiotracer in tumour-bearing mice. [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE were prepared efficiently under mild conditions, and exhibited excellent stability in human serum (>99.5% RCP over 7 days). Longitudinal SPECT/CT images were acquired for 155Tb- and 161Tb- labelled crown-TATE in male NRG mice bearing AR42J tumours. The radiotracers, [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE, showed high tumour targeting (32.6 and 30.0 %ID/g, respectively) and minimal retention in non-target organs at 2.5 h post-administration. Biodistribution studies confirmed the SPECT/CT results, showing high tumour uptake (38.7 ± 8.0 %ID/g and 38.5 ± 3.5 %ID/g, respectively) and favourable tumour-to-background ratios. Blocking studies further confirmed SSTR2-specific tumour accumulation. Overall, these findings suggest that crown-TATE has great potential for element-matched molecular imaging and radionuclide therapy using 155Tb and 161Tb.


Assuntos
Tumores Neuroendócrinos , Masculino , Humanos , Camundongos , Animais , Medicina de Precisão , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética
12.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36986548

RESUMO

Compared to quinoline-based fibroblast activation protein (FAP)-targeted radiotracers, pyridine-based FAP-targeted tracers are expected to have faster pharmacokinetics due to their smaller molecular size and higher hydrophilicity, which we hypothesize would improve the tumor-to-background image contrast. We aim to develop 68Ga-labeled pyridine-based FAP-targeted tracers for cancer imaging with positron emission tomography (PET), and compare their imaging potential with the clinically validated [68Ga]Ga-FAPI-04. Two DOTA-conjugated pyridine-based AV02053 and AV02070 were synthesized through multi-step organic synthesis. IC50(FAP) values of Ga-AV02053 and Ga-AV02070 were determined by an enzymatic assay to be 187 ± 52.0 and 17.1 ± 4.60 nM, respectively. PET imaging and biodistribution studies were conducted in HEK293T:hFAP tumor-bearing mice at 1 h post-injection. The HEK293T:hFAP tumor xenografts were clearly visualized with good contrast on PET images by [68Ga]Ga-AV02053 and [68Ga]Ga-AV02070, and both tracers were excreted mainly through the renal pathway. The tumor uptake values of [68Ga]Ga-AV02070 (7.93 ± 1.88%ID/g) and [68Ga]Ga-AV02053 (5.6 ± 1.12%ID/g) were lower than that of previously reported [68Ga]Ga-FAPI-04 (12.5 ± 2.00%ID/g). However, both [68Ga]Ga-AV02070 and [68Ga]Ga-AV02053 showed higher tumor-to-background (blood, muscle, and bone) uptake ratios than [68Ga]Ga-FAPI-04. Our data suggests that pyridine-based pharmacophores are promising for the design of FAP-targeted tracers. Future optimization on the selection of a linker will be explored to increase tumor uptake while maintaining or even further improving the high tumor-to-background contrast.

13.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838968

RESUMO

With overexpression in various cancers, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer imaging and therapy. However, the high pancreas uptake of reported GRPR-targeting radioligands limits their clinical application. Our goal was to develop 68Ga-labeled agonist tracers for detecting GRPR-expressing tumors with positron emission tomography (PET), and compare them with the clinically validated agonist PET tracer, [68Ga]Ga-AMBA. Ga-TacBOMB2, TacBOMB3, and TacBOMB4, derived from [Thz14]Bombesin(7-14), were confirmed to be GRPR agonists by a calcium mobilization study, and their binding affinities (Ki(GRPR)) were determined to be 7.62 ± 0.19, 6.02 ± 0.59, and 590 ± 36.5 nM, respectively, via in vitro competition binding assays. [68Ga]Ga-TacBOMB2, [68Ga]Ga-TacBOMB3, and [68Ga]Ga-AMBA clearly visualized PC-3 tumor xenografts in a PET imaging study. [68Ga]Ga-TacBOMB2 showed comparable tumor uptake but superior tumor-to-background contrast ratios when compared to [68Ga]Ga-AMBA. Moreover, [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 showed a much lower rate of uptake in the pancreas (1.30 ± 0.14 and 2.41 ± 0.72%ID/g, respectively) than [68Ga]Ga-AMBA (62.4 ± 4.26%ID/g). In conclusion, replacing Met14 in the GRPR-targeting sequence with Thz14 retains high GRPR-binding affinity and agonist properties. With good tumor uptake and tumor-to-background uptake ratios, [68Ga]Ga-TacBOMB2 is promising for detecting GRPR-expressing tumors. The much lower pancreas uptake of [68Ga]Ga-TacBOMB2 and [68Ga]Ga-TacBOMB3 suggests that [Thz14]Bombesin(7-14) is a promising targeting vector for the design of GRPR-targeting radiopharmaceuticals, especially for radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Humanos , Bombesina/química , Receptores da Bombesina/metabolismo , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Pâncreas/metabolismo , Linhagem Celular Tumoral
14.
Molecules ; 28(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770755

RESUMO

Tumor heterogeneity limits the efficacy and reliability of monospecific radiopharmaceuticals in prostate cancer diagnosis and therapy. To overcome this limitation and improve lesion detection sensitivity, we developed and evaluated three bispecific radiotracers that can target both prostate-specific membrane antigen (PSMA) and fibroblast activation protein (FAP), which are the two key proteins overexpressed in prostate cancer. Three FAP-targeting ligands with various linker lengths were synthesized through multistep organic synthesis, and then connected to the PSMA-targeting motif. IC50(PSMA) and IC50(FAP) values of Ga-complexed bispecific ligands, Ga-AV01017, Ga-AV01030, and Ga-AV01038 were 25.2-71.6 and 1.25-2.74 nM, respectively. The uptake values in PSMA-expressing LNCaP tumor xenografts were 4.38 ± 0.55, 5.17 ± 0.51, and 4.25 ± 0.86 %ID/g for [68Ga]Ga-AV01017, [68Ga]Ga-AV01030, and [68Ga]Ga-AV01038, respectively, which were lower than the monospecific PSMA-targeting tracer [68Ga]Ga-HTK03041 (23.1 ± 6.11 %ID/g). The uptake values in FAP-expressing HEK293T:hFAP tumor xenografts were 2.99 ± 0.37, 3.69 ± 0.81, 3.64 ± 0.83 %ID/g for [68Ga]Ga-AV01017, [68Ga]Ga-AV01030, and [68Ga]Ga-AV01038, respectively, which were also lower than the monospecific FAP-targeting tracer, [68Ga]Ga-FAPI-04 (12.5 ± 2.00 %ID/g). We observed that the bispecific tracers had prolonged blood retention, in which tracers with a longer linker tend to have a higher blood uptake and lower tumor uptake. Further investigations are needed to optimize the linker selection to generate promising bispecific PSMA/FAP-targeting tracers for prostate cancer imaging.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Radioisótopos de Gálio , Células HEK293 , Ligantes , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Próstata/metabolismo , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
15.
Theranostics ; 12(14): 6179-6188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168623

RESUMO

The aim of this study was to investigate the effect of replacing Glu in the Lys-urea-Glu PSMA-targeting pharmacophore of [68Ga]Ga-HTK03041 with a close analog on the uptake of kidneys, salivary glands and PSMA-expressing tumor xenografts. Methods: HTK03161, HTK03149 and HTK03189A/B were obtained by replacing Glu in HTK03041 with Asp, Aad (L-2-aminoadipic acid) and Api (2-aminopimelic acid), respectively. PSMA binding affinities were measured by competition binding assays. PET imaging and biodistribution studies of 68Ga-labeled ligands were performed in LNCaP tumor-bearing mice. The best candidate HTK03149 was selected and radiolabeled with 177Lu, and SPECT imaging and biodistribution studies were performed in LNCaP tumor-bearing mice. Radiation dosimetry calculation was conducted using the OLINDA software. Radioligand therapy study was performed in LNCaP tumor-bearing mice treated with [177Lu]Lu-HTK03149 (9.3-148 MBq), [177Lu]Lu-PSMA-617 (37 MBq) or natLu-HTK03149 (500 pmol). Results: PSMA binding affinities (Ki) of Ga-HTK03161, Ga-HTK03149, Ga-HTK03189A and Lu-HTK03149 were 3.88±0.66, 6.99±0.80, 550±35.7 and 1.57±0.42 nM, respectively. PET imaging showed that all 68Ga-labeled HTK03161, HTK03149 and HTK03189A/B were excreted mainly via the renal pathway and had minimal uptake in all organs/tissues including kidneys and salivary glands. Tumor xenografts were clearly visualized in PET images of [68Ga]Ga-HTK03161 and [68Ga]Ga-HTK03149 but were barely visualized using [68Ga]Ga-HTK03189A/B. Tumor uptake values for [68Ga]Ga-HTK03161, [68Ga]Ga-HTK03149, [68Ga]Ga-HTK0189A and [68Ga]Ga-HTK03189B were 12.7±1.91, 19.1±6.37, 2.10±0.28 and 0.67±0.15 %IA/g, respectively at 1h post-injection, and their average kidney and salivary gland uptake values were 2.13-4.41 and 0.20-0.23 %IA/g, respectively. Longitudinal SPECT imaging studies showed that [177Lu]Lu-HTK03149 was excreted mainly through the renal pathway with high uptake in LNCaP tumors and minimal uptake in all normal organs/tissues. The tumor uptake of [177Lu]Lu-HTK03149 peaked at 4h post-injection (20.9±2.99 %IA/g) and the uptake was sustained over time. Compared to [177Lu]Lu-PSMA-617, [177Lu]Lu-HTK03149 had 145% increase in tumor absorbed dose but 70% less in kidney absorbed dose, leading to an 7.1-fold increase in tumor-to-kidney absorbed dose ratio. Radioligand therapy studies showed that only half of the [177Lu]Lu-PSMA-617 injected dosage was needed for [177Lu]Lu-HTK03149 to achieve the same median survival. Conclusion: Replacing Glu in the PSMA-targeting Lys-urea-Glu pharmacophore of [68Ga]Ga-HTK03041 with Asp and Aad generates [68Ga]Ga-HTK03161 and [68Ga]Ga-HTK03149, respectively, and the new derivatives retain high uptake in LNCaP tumors and have minimal uptake in normal organs/tissues including kidneys and salivary glands. [177Lu]Lu-HTK03149 also retain high uptake in LNCaP tumors and has minimal uptake in normal organs/tissues, and is, therefore, promising for clinical translation to treat prostate cancer.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Ácido 2-Aminoadípico/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Radioisótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Humanos , Rim/patologia , Ligantes , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos , Glândulas Salivares , Distribuição Tecidual , Ureia/metabolismo
16.
J Inorg Biochem ; 235: 111936, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878576

RESUMO

A new, bifunctional chelating ligand for immuno-Positron Emission Tomography (PET) was designed, synthesized, and conjugated to Trastuzumab for a proof-of-concept study with 89Zr. H4neunox was synthesized from the tris(2-aminoethyl)amine backbone, decorated with 8-hydroxyquinoline moieties, and utilizes a primary amine for functionalization. A maleimide moiety extends the chelator to create H4neunox-mal for antibody conjugation via maleimide-thiol click chemistry. Preliminary 89Zr radiolabeling of H4neunox indicated quantitative radiolabeling at 1 × 10-5 M, but improved inertness towards human serum (96% intact at 7 d) and Fe3+ (92% intact at 24 h) compared to the previously synthesized H5decaox. The chelator was successfully conjugated to the monoclonal antibody, Trastuzumab, and used in preliminary radiolabeling reactions (37 °C, 2 h) with 89Zr. Radiochemical assessments of the new H4neunox-Trastuzumab conjugate include 89Zr radiolabeling, spin filter purification, cell-binding immunoreactivity, and in vivo PET imaging and biodistribution in SKOV-3 tumour bearing nude mice, performed in comparison with the desferrioxamine B analog, DFO-Trastuzumab. The [89Zr]Zr(neunox-Trastuzumab) showed lowered inertness towards serum (76% intact at 24 h) as well as demetallation in vivo through bone uptake (21% ID/g) in PET imaging and biodistribution studies when compared to [89Zr]Zr(DFO-Trastuzumab). Although the combination of the chelator and antibody had detrimental effects on their intended purposes, nonetheless, the primary amine platform of H4neunox developed here provides an oxine-based bifunctional ligand for further derivatizations with other targeting vectors.


Assuntos
Desferroxamina , Zircônio , Animais , Linhagem Celular Tumoral , Quelantes , Humanos , Ligantes , Maleimidas , Camundongos , Camundongos Nus , Oxiquinolina , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Trastuzumab
17.
EJNMMI Radiopharm Chem ; 7(1): 12, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666363

RESUMO

BACKGROUND: Combining optical (fluorescence) imaging with nuclear imaging has the potential to offer a powerful tool in personal health care, where nuclear imaging offers in vivo functional whole-body visualization, and the fluorescence modality may be used for image-guided tumor resection. Varying chemical strategies have been exploited to fuse both modalities into one molecular entity. When radiometals are employed in nuclear imaging, a chelator is typically inserted into the molecule to facilitate radiolabeling; the availability of the chelator further expands the potential use of these platforms for targeted radionuclide therapy if a therapeutic radiometal is employed. Herein, a novel mixed modality scaffold which contains a tetrazine (Tz)--for biomolecule conjugation, fluorophore-for optical imaging, and chelator-for radiometal incorporation, in one construct is presented. The novel platform was characterized for its fluorescence properties, radiolabeled with single-photon emission computed tomography (SPECT) isotope indium-111 (111In3+) and therapeutic alpha emitter actinium-225 (225Ac3+). Both radiolabels were conjugated in vitro to trans-cyclooctene (TCO)-modified trastuzumab; biodistribution and immuno-SPECT imaging of the former conjugate was assessed. RESULTS: Key to the success of the platform synthesis was incorporation of a 4,4'-dicyano-BODIPY fluorophore. The route gives access to an advanced intermediate where final chelator-incorporated compounds can be easily accessed in one step prior to radiolabeling or biomolecule conjugation. The DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) conjugate was prepared, displayed good fluorescence properties, and was successfully radiolabeled with 111In & 225Ac in high radiochemical yield. Both complexes were then separately conjugated in vitro to TCO modified trastuzumab through an inverse electron demand Diels-Alder (IEDDA) reaction with the Tz. Pilot small animal in vivo immuno-SPECT imaging with [111In]In-DO3A-BODIPY-Tz-TCO-trastuzumab was also conducted and exhibited high tumor uptake (21.2 ± 5.6%ID/g 6 days post-injection) with low uptake in non-target tissues. CONCLUSIONS: The novel platform shows promise as a multi-modal probe for theranostic applications. In particular, access to an advanced synthetic intermediate where tailored chelators can be incorporated in the last step of synthesis expands the potential use of the scaffold to other radiometals. Future studies including validation of ex vivo fluorescence imaging and exploiting the pre-targeting approach available through the IEDDA reaction are warranted.

18.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744904

RESUMO

The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7-14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7-14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7-14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio , Humanos , Pâncreas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia
19.
RSC Chem Biol ; 3(1): 69-78, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128410

RESUMO

Targeted cancer therapy represents a paradigm-shifting approach that aims to deliver a toxic payload selectively to target-expressing cells thereby sparing normal tissues the off-target effects associated with traditional chemotherapeutics. Since most targeted constructs rely on standard microtubule inhibitors or DNA-reactive molecules as payloads, new toxins that inhibit other intracellular targets are needed to realize the full potential of targeted therapy. Among these new payloads, α-amanitin has gained attraction as a payload in targeted therapy. Here, we conjugate two synthetic amanitins at different sites to demonstrate their utility as payloads in peptide drug conjugates (PDCs). As an exemplary targeting agent, we chose octreotate, a well-studied somatostatin receptor (sstr2) peptide agonist for the conjugation to synthetic amatoxins via three tailor-built linkers. The linker chemistry permitted the evaluation of one non-cleavable and two cleavable self-immolative conjugates. The immolating linkers were chosen to take advantage of either the reducing potential of the intracellular environment or the high levels of lysosomal proteases in tumor cells to trigger toxin release. Cell-based assays on target-positive Ar42J cells revealed target-specific reduction in viability with up to 1000-fold enhancement in bioactivity compared to the untargeted amatoxins. Altogether, this preliminary study enabled the development of a highly modular synthetic platform for the construction of amanitin-based conjugates that can be readily extended to various targeting moieties.

20.
Clin Cancer Res ; 28(8): 1628-1639, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35078860

RESUMO

PURPOSE: Mantle cell lymphoma (MCL) is associated with poor survival. The purpose of this study was to assess whether the C-X-C chemokine receptor type 4 (CXCR4) is a useful target for imaging and radioligand therapy of MCL, using a novel pair of radioligands, [68Ga]Ga and [177Lu]Lu-BL02. EXPERIMENTAL DESIGN: We performed a retrospective analysis of 146 patients with MCL to evaluate CXCR4 expression and its correlation with outcomes. Guided by in silico methods, we designed BL02, a new radioligand labelled with 68Ga or 177Lu for PET imaging and therapy, respectively. We performed imaging and biodistribution studies in xenograft models with varying CXCR4 expression. We evaluated [177Lu]Lu-BL02 in MCL models, and evaluated its potential for therapy in Z138 MCL xenografts. RESULTS: Phosphorylated and nonphosphorylated CXCR4 expression were correlated with poor survival in patients with MCL and characterized by unique underlying molecular signatures. [68Ga]Ga-BL02 uptake correlated with CXCR4 expression, and localized lesions in a metastatic xenograft model. [177Lu]Lu-BL02 showed high uptake in MCL xenografts. Therapy studies with a single dose in the Z138 model showed tumor regression and improved survival compared with a control group. Upon regrowth, the treated mice experienced concurrent metastasis alongside localized xenograft regrowth, and recurrent lesions showed enhanced CXCR4 signaling. CONCLUSIONS: CXCR4 is an independent factor of poor prognosis for MCL and a promising target for imaging and radioligand therapy. [68Ga]Ga-BL02 showed high contrast to visualize CXCR4-expressing xenografts for PET imaging and [177Lu]Lu-BL02 induced rapid tumor regression in a preclinical model of MCL.


Assuntos
Linfoma de Célula do Manto , Adulto , Animais , Linhagem Celular Tumoral , Humanos , Linfoma de Célula do Manto/diagnóstico por imagem , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/radioterapia , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Estudos Retrospectivos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA