Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(6): 3008-3015, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33185916

RESUMO

The PtII linker [ethylenediamineplatinum(II)]2+ , coined Lx, has emerged as a novel non-conventional approach to antibody-drug conjugates (ADCs) and has shown its potential in preclinical in vitro and in vivo benchmark studies. A crucial improvement of the Lx conjugation reaction from initially <15 % to ca. 75-90 % conjugation efficiency is described, resulting from a systematic screening of all relevant reaction parameters. NaI, a strikingly simple inorganic salt additive, greatly improves the conjugation efficiency as well as the conjugation selectivity simply by exchanging the leaving chloride ligand on Cl-Lx-drug complexes (which are direct precursors for Lx-ADCs) for iodide, thus generating I-Lx-drug complexes as more reactive species. Using this iodide effect, we developed a general and highly practical conjugation procedure that is scalable: our lead Lx-ADC was produced on a 5 g scale with an outstanding conjugation efficiency of 89 %.


Assuntos
Anticorpos Monoclonais/química , Complexos de Coordenação/química , Imunoconjugados/química , Platina/química , Animais , Linhagem Celular Tumoral , Desferroxamina/química , Humanos , Imunoconjugados/sangue , Imunoconjugados/metabolismo , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Receptor ErbB-2/imunologia , Iodeto de Sódio/química , Distribuição Tecidual , Transplante Heterólogo , Trastuzumab/química , Trastuzumab/imunologia , Trastuzumab/uso terapêutico
2.
Expert Opin Drug Deliv ; 16(8): 783-793, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31327255

RESUMO

Introduction: Compared to the antibody and drug components of an ADC, the linker part has been somewhat neglected. However, its importance for the reduction of failures in ADC approvals is increasingly recognized. Next of being a stable glue between drug and antibody, an ideal linker should improve the manufacturability and widen the therapeutic window of ADCs. Areas covered: The biopharmaceutical company LinXis started an ADC development program in which platinum(II) is the key element of the first metal-organic linker. The cationic complex [ethylenediamineplatinum(II)]2+, herein called 'Lx®', is used successfully for conjugation of drugs to antibodies. Expert opinion: Based on lessons learned from ADC development, Lx linker technology fulfills most of the desirable linker characteristics. Lx allows large-scale cost-effective manufacturing of ADCs via a straightforward two-step 'plug-and-play' process. First clinical candidate trastuzumab-Lx-auristatin F shows favorable preclinical safety as well as outstanding in vivo tumor targeting performance and therapeutic efficacy.


Assuntos
Aminobenzoatos/química , Antineoplásicos/química , Imunoconjugados/química , Oligopeptídeos/química , Compostos Organoplatínicos/química , Trastuzumab/química , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Compostos Organoplatínicos/uso terapêutico , Trastuzumab/uso terapêutico
3.
J Nucl Med ; 59(7): 1146-1151, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29496986

RESUMO

Linker instability and impaired tumor targeting can affect the tolerability and efficacy of antibody-drug conjugates (ADCs). To improve these ADC characteristics, we recently described the use of a metal-organic linker, [ethylenediamineplatinum(II)]2+, herein called Lx Initial therapy studies in xenograft-bearing mice revealed that trastuzumab-Lx-auristatin F (AF) outperformed its maleimide benchmark trastuzumab-mal-AF and the Food and Drug Administration-approved ado-trastuzumab emtansine, both containing conventional linkers. In this study, we aimed to characterize Lx-based ADCs for in vivo stability and tumor targeting using 195mPt and 89Zr. Methods: The γ-emitter 195mPt was used to produce the radiolabeled Lx [195mPt]Lx89Zr-Desferrioxamine (89Zr-DFO) was conjugated to trastuzumab either via [195mPt]Lx (to histidine residues) or conventionally (to lysine residues) in order to monitor the biodistribution of antibody, payload, and linker separately. Linker stability was determined by evaluating the following ADCs for biodistribution in NCI-N87 xenograft-bearing nude mice 72 h after injection: trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab (control), all having drug-to-antibody ratios (DARs) of 2.2-2.5. To assess the influence of DAR on biodistribution, 89Zr-DFO-(Lys)trastuzumab-Lx-AF with an AF-to-antibody ratio of 0, 2.6, or 5.2 was evaluated 96 h after injection. Results: Similar biodistributions were observed for trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab irrespective of the isotope used for biodistribution assessment. The fact that Lx follows the antibody biodistribution indicates that the payload-Lx bond is stable in vivo. Uptake of the 3 conjugates, as percentage injected dose (%ID) per gram of tissue, was about 30 %ID/g in tumor tissue but less than 10 %ID/g in most healthy tissues. Trastuzumab-[195mPt]Lx-AF (DAR 2.2) showed a tendency toward faster blood clearance and an elevated liver uptake, which increased significantly to 28.1 ± 4.2 %ID/g at a higher DAR of 5.2, as revealed from the biodistribution and PET imaging studies. Conclusion: As shown by 195mPt/89Zr labeling, ADCs containing the Lx linker are stable in vivo. In the case of trastuzumab-Lx-AF (DARs 2.2 and 2.6), an unimpaired biodistribution was demonstrated.


Assuntos
Imunoconjugados/química , Isótopos/química , Platina/química , Zircônio/química , Animais , Desferroxamina/química , Imunoconjugados/farmacocinética , Marcação por Isótopo , Camundongos , Distribuição Tecidual
4.
Cancer Res ; 77(2): 257-267, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27872093

RESUMO

Greater control is desirable in the stochastic conjugation technology used to synthesize antibody-drug conjugates (ADC). We have shown recently that a fluorescent dye can be stably conjugated to a mAb using a bifunctional platinum(II) linker. Here, we describe the general applicability of this novel linker technology for the preparation of stable and efficacious ADCs. The ethylenediamine platinum(II) moiety, herein called Lx, was coordinated to Desferal (DFO) or auristatin F (AF) to provide storable "semifinal" products, which were directly conjugated to unmodified mAbs. Conjugation resulted in ADCs with unimpaired mAb-binding characteristics, DAR in the range of 2.5 to 2.7 and approximately 85% payload bound to the Fc region, presumably to histidine residues. To evaluate the in vivo stability of Lx and its effect on pharmacokinetics and tumor targeting of an ADC, Lx-DFO was conjugated to the HER2 mAb trastuzumab, followed by radiolabeling with 89Zr. Trastuzumab-Lx-DFO-89Zr was stable in vivo and exhibited pharmacokinetic and tumor-targeting properties similar to parental trastuzumab. In a xenograft mouse model of gastric cancer (NCI-N87) or an ado-trastuzumab emtansine-resistant breast cancer (JIMT-1), a single dose of trastuzumab-Lx-AF outperformed its maleimide benchmark trastuzumab-Mal-AF and FDA-approved ado-trastuzumab emtansine. Overall, our findings show the potential of the Lx technology as a robust conjugation platform for the preparation of anticancer ADCs. Cancer Res; 77(2); 257-67. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Trastuzumab/farmacologia , Aminobenzoatos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Desferroxamina , Desenho de Fármacos , Humanos , Imunoconjugados/química , Camundongos , Oligopeptídeos , Compostos de Platina , Traçadores Radioativos , Neoplasias Gástricas/patologia , Trastuzumab/química , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio
5.
Org Biomol Chem ; 9(14): 5129-36, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21625704

RESUMO

The one-pot, three-component Sonogashira coupling-TMS-deprotection-CuAAC ("click") sequence is the key reaction for the rapid synthesis of triazolyl substituted N-Boc protected NH-heterocycles, such as indole, indazole, 4-, 5-, 6-, and 7-azaindoles, 4,7-diazaindole, 7-deazapurines, pyrrole, pyrazole, and imidazole. Subsequently, the protective group was readily removed to give the corresponding triazolyl derivatives of these tremendously important NH-heterocycles. All compounds have been tested in a broad panel of kinase assays. Several compounds, 8f, 8h, 8k, and 8l, have been shown to inhibit the kinase PDK1, a target with high oncology relevance, and thus they are promising lead structures for the development of more active derivatives. The X-ray structure analysis of compound 8f in complex with PDK1 has revealed the detailed binding mode of the molecule in the kinase.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Compostos Heterocíclicos/síntese química , Inibidores de Proteínas Quinases/síntese química , Compostos de Trimetilsilil/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Catálise , Cristalografia por Raios X , Ciclização , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA