Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(20): 8535-8540, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727007

RESUMO

The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.


Assuntos
Muramidase , Compostos Organoplatínicos , Ribonuclease Pancreático , Muramidase/química , Muramidase/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Animais , Cristalografia por Raios X , Compostos Organoplatínicos/química , Compostos Organoplatínicos/metabolismo , Bovinos , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Galinhas , Espectrometria de Massas por Ionização por Electrospray , Dimetil Sulfóxido/química , Carboplatina/química , Carboplatina/metabolismo
2.
Dalton Trans ; 53(23): 9612-9656, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808485

RESUMO

Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.


Assuntos
Monóxido de Carbono , Pró-Fármacos , Monóxido de Carbono/química , Monóxido de Carbono/farmacologia , Humanos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Elementos de Transição/química
3.
Int J Biol Macromol ; 254(Pt 1): 127775, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287601

RESUMO

Protein fibrillation is commonly associated with pathologic amyloidosis. However, under appropriate conditions several proteins form fibrillar structures in vitro that can be used for biotechnological applications. MNEI and its variants, firstly designed as single chain derivatives of the sweet protein monellin, are also useful models for protein fibrillary aggregation studies. In this work, we have drawn attention to a protein dubbed Mut9, already characterized as a "super stable" MNEI variant. Comparative analysis of the respective X-ray structures revealed how the substitutions present in Mut9 eliminate several unfavorable interactions and stabilize the global structure. Molecular dynamic predictions confirmed the presence of a hydrogen-bonds network in Mut9 which increases its stability, especially at neutral pH. Thioflavin-T (ThT) binding assays and Fourier transform infrared (FTIR) spectroscopy indicated that the aggregation process occurs both at acidic and neutral pH, with and without addition of NaCl, even if with a different kinetics. Accordingly, Transmission Electron Microscopy (TEM) showed a fibrillar organization of the aggregates in all the tested conditions, albeit with some differences in the quantity and in the morphology of the fibrils. Our data underline the great potential of Mut9, which combines great stability in solution with the versatile conversion into nanostructured biomaterials.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Plantas , Proteínas de Plantas/química , Microscopia Eletrônica de Transmissão , Amiloide/química , Concentração de Íons de Hidrogênio
4.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38270175

RESUMO

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Assuntos
Antineoplásicos , Trióxido de Arsênio/análogos & derivados , DNA de Forma B , Cisplatino/química , Fator de Transcrição AP-1/metabolismo , Antineoplásicos/química , DNA/química
5.
Int J Biol Macromol ; 253(Pt 1): 126666, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660867

RESUMO

Paddlewheel diruthenium complexes are being used as metal-based drugs. It has been proposed that their charge and steric properties determine their selectivity towards proteins. Here, we explore these parameters using the first water-soluble diruthenium complex bearing two formamidinate ligands, [Ru2Cl(DPhF)2(O2CCH3)2], and two derivatives, [Ru2Cl(DPhF)(O2CCH3)3] and K2[Ru2(DPhF)(CO3)3] (DPhF- = N,N'-diphenylformamidinate), with one formamidinate. Their protein binding properties have been assessed employing hen egg white lysozyme (HEWL). The results confirm the relationship between the type of interaction (coordinate/non-coordinate bonds) and the charge of diruthenium complexes. The crystallization medium is also a key factor. In all cases, diruthenium species maintain the M-M bond and produce stable adducts. The antiproliferative properties of these diruthenium complexes have been evaluated on an eukaryotic cell-based model. Our data show a correlation between the number of the formamidinate ligands and the anticancer activity of the diruthenium derivatives against human epithelial carcinoma cells. Increased cytotoxicity may be related to increased steric hindrance and Ru25+ core electronic density. However, the effect of increasing the lipophilicity of diruthenium species by introducing a second N,N'-diphenylformamidinate must be also considered. This work illustrates a systematic approach to shed light on the relevant properties of diruthenium compounds to design metal-based metallodrugs and diruthenium metalloenzymes.


Assuntos
Metais , Humanos , Ligação Proteica
6.
Dalton Trans ; 52(26): 9058-9067, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337706

RESUMO

Cisplatin (CisPt), a platinum-based chemotherapeutic widely used in the treatment of various cancers, has multiple mechanisms of action, including nuclear DNA (nDNA) and mitochondrial DNA (mDNA) damage and cytoskeletal perturbations affecting, in turn, the membrane transporter activity. CisPt binding to proteins and enzymes may modulate its biochemical mechanism of action and is associated with cancer cell resistance to the drug. In this work, we investigate the interaction between cisplatin and angiogenin (Ang), a protein strongly expressed in many types of cancer and a potent angiogenic factor. The adduct formed upon reaction of CisPt with Ang (Ang@CisPt) was characterized by X-ray crystallography to evidence the exact platination site and by UV-visible (UV-vis) absorption and circular dichroism (CD) spectroscopies to shed light on any possible change in the protein conformation. Furthermore, high-resolution electrospray ionization (ESI) mass spectrometry was utilized to evaluate the Ang : CisPt stoichiometry of the Ang@CisPt adduct. The effect of the Ang@CisPt adduct on a prostate cancer cell line (PC-3) was tested by colorimetric assays in terms of cell viability, at both levels of nuclear and mitochondrial damage, and reactive oxygen species (ROS) production. Cellular imaging by laser scanning confocal microscopy (LSM) was utilized to scrutinize the cytoskeleton actin reorganization and the lysosome and mitochondria organelle perturbation. These studies highlight the possibility of new molecular pathways and targets for CisPt activity.


Assuntos
Antineoplásicos , Neoplasias , Masculino , Humanos , Cisplatino/farmacologia , Ribonuclease Pancreático , Linhagem Celular , Antineoplásicos/farmacologia
7.
Inorg Chem ; 62(26): 10470-10480, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338927

RESUMO

Neurodegenerative diseases are often associated with an uncontrolled amyloid aggregation. Hence, many studies are oriented to discover new compounds that are able to modulate self-recognition mechanisms of proteins involved in the development of these pathologies. Herein, three metal-complexes able to release carbon monoxide (CORMs) were analyzed for their ability to affect the self-aggregation of the amyloidogenic fragment of nucleophosmin 1, corresponding to the second helix of the three-helix bundle located in the C-terminal domain of the protein, i.e., NPM1264-277, peptide. These complexes were two cymantrenes coordinated to the nucleobase adenine (Cym-Ade) and to the antibiotic ciprofloxacin (Cym-Cipro) and a Re(I)-compound containing 1,10-phenanthroline and 3-CCCH2NHCOCH2CH2-6-bromo-chromone as ligands (Re-Flavo). Thioflavin T (ThT) assay, UV-vis absorption and fluorescence spectroscopies, scanning electron microscopy (SEM), and electrospray ionization mass spectrometry (ESI-MS) indicated that the three compounds have different effects on the peptide aggregation. Cym-Ade and Cym-Cipro act as aggregating agents. Cym-Ade induces the formation of NPM1264-277 fibers longer and stiffer than that formed by NPM1264-277 alone; irradiation of complexes speeds the formation of fibers that are more flexible and thicker than those found without irradiation. Cym-Cipro induces the formation of longer fibers, although slightly thinner in diameter. Conversely, Re-Flavo acts as an antiaggregating agent. Overall, these results indicate that metal-based CORMs with diverse structural features can have a different effect on the formation of amyloid fibers. A proper choice of ligands attached to metal can allow the development of metal-based drugs with potential application as antiamyloidogenic agents.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes , Metais , Peptídeos , Proteínas Nucleares , Ciprofloxacina , Amiloide , Peptídeos beta-Amiloides
8.
Inorg Chem ; 62(21): 8407-8417, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195003

RESUMO

Vanadium complexes (VCs) are promising agents for the treatment, among others, of diabetes and cancer. The development of vanadium-based drugs is mainly limited by a scarce knowledge of the active species in the target organs, which is often determined by the interaction of VCs with biological macromolecules like proteins. Here, we have studied the binding of [VIVO(empp)2] (where Hempp is 1-methyl-2-ethyl-3-hydroxy-4(1H)-pyridinone), an antidiabetic and anticancer VC, with the model protein hen egg white lysozyme (HEWL) by electrospray ionization-mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR), and X-ray crystallography. ESI-MS and EPR techniques reveal that, in aqueous solution, both the species [VIVO(empp)2] and [VIVO(empp)(H2O)]+, derived from the first one upon the loss of a empp(-) ligand, interact with HEWL. Crystallographic data, collected under different experimental conditions, show covalent binding of [VIVO(empp)(H2O)]+ to the side chain of Asp48, and noncovalent binding of cis-[VIVO(empp)2(H2O)], [VIVO(empp)(H2O)]+, [VIVO(empp)(H2O)2]+, and of an unusual trinuclear oxidovanadium(V) complex, [VV3O6(empp)3(H2O)], with accessible sites on the protein surface. The possibility of covalent and noncovalent binding with different strength and of interaction with various sites favor the formation of adducts with the multiple binding of vanadium moieties, allowing the transport in blood and cellular fluids of more than one metal-containing species with a possible amplification of the biological effects.


Assuntos
Proteínas , Vanádio , Vanádio/química , Piridonas/química , Água , Espectrometria de Massas por Ionização por Electrospray
9.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768690

RESUMO

This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.


Assuntos
Antineoplásicos , Muramidase , Antineoplásicos/farmacologia , Antineoplásicos/química , Cristalografia por Raios X , Dimetil Sulfóxido , DNA , Interações Hidrofóbicas e Hidrofílicas , Compostos de Platina/química , Compostos de Platina/farmacologia
10.
Front Mol Biosci ; 10: 1008985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714262

RESUMO

For their easy and high-yield recombinant production, their high stability in a wide range of physico-chemical conditions and their characteristic hollow structure, ferritins (Fts) are considered useful scaffolds to encapsulate bioactive molecules. Notably, for the absence of immunogenicity and the selective interaction with tumor cells, the nanocages constituted by the heavy chain of the human variant of ferritin (hHFt) are optimal candidates for the delivery of anti-cancer drugs. hHFt nanocages can be disassembled and reassembled in vitro to allow the loading of cargo molecules, however the currently available protocols present some relevant drawbacks. Indeed, protein disassembly is achieved by exposure to extreme pH (either acidic or alkaline), followed by incubation at neutral pH to allow reassembly, but the final protein recovery and homogeneity are not satisfactory. Moreover, the exposure to extreme pH may affect the structure of the molecule to be loaded. In this paper, we report an alternative, efficient and reproducible procedure to reversibly disassemble hHFt under mild pH conditions. We demonstrate that a small amount of sodium dodecyl sulfate (SDS) is sufficient to disassemble the nanocage, which quantitatively reassembles upon SDS removal. Electron microscopy and X-ray crystallography show that the reassembled protein is identical to the untreated one. The newly developed procedure was used to encapsulate two small molecules. When compared to the existing disassembly/reassembly procedures, our approach can be applied in a wide range of pH values and temperatures, is compatible with a larger number of cargos and allows a higher protein recovery.

11.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430642

RESUMO

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Assuntos
Auranofina , Ferritinas , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Humanos , Antineoplásicos/química , Auranofina/química , Auranofina/farmacologia , Sítios de Ligação , Ferritinas/química , Ferritinas/metabolismo , Ouro/química , Cavalos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
12.
Dalton Trans ; 51(27): 10475-10485, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766118

RESUMO

New neutral carbene complexes of gold(I) [Au(Im-Me)X] (X = Cl, Au1; X = Br, Au2; X = I, Au3) have been synthesized and fully characterized by different techniques, including NMR and UV-vis absorption spectroscopy and single crystal X-ray diffraction. The carbene ligand Im-Me is decorated with a glucoside fragment via a triazole linker, obtainable through a click chemistry reaction. The compounds retain the Au-NHC fragment in aqueous solvents, and an equilibrium between the neutral halo- and the cationic di-carbene form [Au(Im-Me)2]+ is observed, whose extent follows the trend Au1 < Au2 < Au3. Cytotoxicity studies on two cancer and two non-tumorigenic cell lines reflect the solution behavior, as a certain difference among the complexes was disclosed, with the iodo complex Au3 being more active and selective. The compounds interact with both DNA and protein model systems. The X-ray structure of the adduct formed upon the reaction of Au1 with bovine pancreatic ribonuclease (RNase A) reveals Au binding at the side chain of His105 of both protein molecules A and B of the asymmetric unit. The binding of gold atoms at both the nitrogen atoms of the imidazole ring of His15 and at the N-terminal tail has been found in the adduct formed with hen egg white lysozyme.


Assuntos
DNA , Ouro , Animais , Bovinos , Glicoconjugados/farmacologia , Ouro/química , Ligantes , Metano/análogos & derivados , Modelos Moleculares
13.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35455422

RESUMO

ß-lactoglobulin is the major component of whey. Here, the adduct formed upon the reaction of the protein with oxaliplatin (OXA) has been prepared, structurally characterized by X-ray crystallography and electrospray ionization-mass spectrometry, and evaluated as a cytotoxic agent. The data demonstrate that OXA rapidly binds ß-lactoglobulin via coordination with a Met7 side chain upon release of the oxalate ligand. The adduct is significantly more cytotoxic than the free drug and induces apoptosis in cancer cells. Overall, our results suggest that metallodrug/ß-lactoglobulin adducts can be used as anticancer agents and that the protein can be used as a metallodrug delivery system.

14.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408863

RESUMO

The research interest in the field of inorganic medicinal chemistry had a large increase after the serendipitous discovery of the cytotoxic activity of cisplatin by Rosenberg at the end of 1960s [...].


Assuntos
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia
15.
Dalton Trans ; 51(9): 3695-3705, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166290

RESUMO

Dirhodium complexes of general formula [Rh2(O2CR)4]L2 are a well-known class of bimetallic compounds that are used as efficient catalysts for a variety of reactions and have been shown to be potent antibacterial and anticancer agents. The catalytic and biological properties of these complexes largely depend on the nature of the bridging carboxylate ligands. Trifluoroacetate (tfa)-containing dirhodium compounds have been used to build artificial metalloenzymes upon reaction with peptides and have been shown to be more cytotoxic than dirhodium tetraacetate. However, there is no structural information on the interaction between these compounds and proteins. Here, cis-Rh2(µ-O2CCH3)2(µ-O2CCF3)2 ([cis-Rh2(OAc)2(tfa)2]) has been synthesized and its reaction with bovine pancreatic ribonuclease (RNase A) and hen egg white lysozyme (HEWL) was analyzed using a combination of different techniques, including Fluorine-19 nuclear magnetic resonance spectroscopy and macromolecular X-ray crystallography, with the aim to unveil the differences in the reactivity of tfa-containing dihrodium complexes with proteins when compared to [Rh2(OAc)4]. [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)4] bind the N atoms of His side chains of RNase A at the axial position; however the fluorine-containing compound rapidly loses its tfa ligands, while [Rh2(OAc)4] can retain the acetate ligands upon protein binding. The reactivity of [cis-Rh2(OAc)2(tfa)2] with HEWL is slightly distinct when compared to that of [Rh2(OAc)4] under the same experimental conditions; however, both [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)4] degrade when soaked within HEWL crystals. These results provide a structural-based guide for the design of new heterogenous chiral dirhodium/peptide and dirhodium/protein adducts with application in the fields of organic synthesis and asymmetric catalysis.


Assuntos
Compostos Organometálicos
16.
J Inorg Biochem ; 226: 111657, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784565

RESUMO

Angiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process. Overall, our findings point to angiogenin as a possible target of oxaliplatin, thus suggesting a potential novel mechanism for the antineoplastic activity of this platinum drug and opening the avenue to novel approaches in the combined anti-cancer anti-angiogenic therapy.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Oxaliplatina/farmacologia , Neoplasias da Próstata , Ribonuclease Pancreático/metabolismo , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638887

RESUMO

Three novel platinum(II) complexes bearing N-heterocyclic ligands, i.e., Pt2c, Pt-IV and Pt-VIII, were previously prepared and characterized. They manifested promising in vitro anticancer properties associated with non-conventional modes of action. To gain further mechanistic insight, we have explored here the reactions of these Pt compounds with a few model proteins, i.e., hen egg white lysozyme (HEWL), bovine pancreatic ribonuclease (RNase A), horse heart cytochrome c (Cyt-c) and human serum albumin (HSA), primarily through ESI MS analysis. Characteristic and variegate patterns of reactivity were highlighted in the various cases that appear to depend both on the nature of the Pt complex and of the interacting protein. The protein-bound Pt fragments were identified. In the case of the complex Pt2c, the adducts formed upon reaction with HEWL and RNase A were further characterized by solving the respective crystal structures: this allowed us to determine the exact location of the various Pt binding sites. The implications of the obtained results are discussed in relation to the possible mechanisms of action of these innovative anticancer Pt complexes.


Assuntos
Complexos de Coordenação/química , Citocromos c/química , Muramidase/química , Platina/química , Ribonuclease Pancreático/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Bovinos , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Citocromos c/metabolismo , Cavalos , Humanos , Ligantes , Modelos Moleculares , Muramidase/metabolismo , Platina/metabolismo , Ligação Proteica , Domínios Proteicos , Ribonuclease Pancreático/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Int J Biol Macromol ; 191: 560-571, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34563576

RESUMO

Onconase (ONC) is a monomeric amphibian "pancreatic-type" RNase endowed with remarkable anticancer activity. ONC spontaneously forms traces of a dimer (ONC-D) in solution, while larger amounts can be formed when ONC is lyophilized from mildly acidic solutions. Here, we report the crystal structure of ONC-D and analyze its catalytic and antitumor activities in comparison to ONC. ONC-D forms via the three-dimensional swapping of the N-terminal α-helix between two monomers, but it displays a significantly different quaternary structure from that previously modeled [Fagagnini A et al., 2017, Biochem J 474, 3767-81], and based on the crystal structure of the RNase A N-terminal swapped dimer. ONC-D presents a variable quaternary assembly deriving from a variable open interface, while it retains a catalytic activity that is similar to that of ONC. Notably, ONC-D displays antitumor activity against two human melanoma cell lines, although it exerts a slightly lower cytostatic effect than the monomer. The inhibition of melanoma cell proliferation by ONC or ONC-D is associated with the reduction of the expression of the anti-apoptotic B cell lymphoma 2 (Bcl2), as well as of the total expression and phosphorylation of the Signal Transducer and Activator of Transcription (STAT)-3. Phosphorylation is inhibited in both STAT3 Tyr705 and Ser727 key-residues, as well as in its upstream tyrosine-kinase Src. Consequently, both ONC species should exert their anti-cancer action by inhibiting the pro-tumor pleiotropic STAT3 effects deriving either by its phospho-tyrosine activation or by its non-canonical signaling pathways. Both ONC species, indeed, increase the portion of A375 cells undergoing apoptotic cell death. This study expands the variety of RNase domain-swapped dimeric structures, underlining the unpredictability of the open interface arrangement upon domain swapping. Structural data also offer valuable insights to analyze the differences in the measured ONC or ONC-D biological activities.


Assuntos
Antineoplásicos/química , Domínio Catalítico , Melanoma/metabolismo , Ribonucleases/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
19.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445409

RESUMO

This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV-vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.


Assuntos
Antineoplásicos/síntese química , Glucose/química , Compostos Organoplatínicos/síntese química , Triazóis/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Ratos
20.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668605

RESUMO

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


Assuntos
Antineoplásicos , Trióxido de Arsênio/análogos & derivados , Cisplatino/análogos & derivados , Citotoxinas , Ferritinas , Neoplasias/tratamento farmacológico , Compostos de Platina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Trióxido de Arsênio/química , Trióxido de Arsênio/farmacologia , Células 3T3 BALB , Cisplatino/química , Cisplatino/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Ferritinas/química , Ferritinas/farmacologia , Humanos , Camundongos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Compostos de Platina/química , Compostos de Platina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA