Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Tissue Cell ; 89: 102423, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38875923

RESUMO

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.

2.
Cell Biol Int ; 47(2): 352-366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36411367

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a complex biological process that occurs during normal embryogenesis and in certain pathological conditions, particularly in cancer. EMT can be viewed as a cell biology-based process, since it involves all the cellular components, including the plasma membrane, cytoskeleton and extracellular matrix, endoplasmic reticulum, Golgi apparatus, lysosomes, and mitochondria, as well as cellular processes, such as regulation of gene expression and cell cycle, adhesion, migration, signaling, differentiation, and death. Therefore, we propose that EMT could be used to motivate undergraduate medical students to learn and understand cell biology. Here, we describe and discuss the involvement of each cellular component and process during EMT. To investigate the density with which different cell biology concepts are used in EMT research, we apply a bibliometric approach. The most frequent cell biology topics in EMT studies were regulation of gene expression, cell signaling, cell cycle, cell adhesion, cell death, cell differentiation, and cell migration. Finally, we suggest that the study of EMT could be incorporated into undergraduate disciplines to improve cell biology understanding among premedical, medical and biomedical students.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Transdução de Sinais , Movimento Celular
3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893736

RESUMO

Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 µM to 7.53 µM (MTT at 72 h) and 0.096 µM to 8.768 µM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.

4.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655689

RESUMO

Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Nuclear/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Animais , Células Cultivadas , Embrião de Galinha , Proteínas Intrinsicamente Desordenadas/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membrana Nuclear/ultraestrutura , Proteoma/genética , Proteoma/metabolismo , Peixe-Zebra
5.
Front Immunol ; 12: 651740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828561

RESUMO

Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-ß (TGF-ß) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.


Assuntos
Difosfato de Adenosina/farmacologia , Diabetes Mellitus Experimental/complicações , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Cicatrização/efeitos dos fármacos , Difosfato de Adenosina/uso terapêutico , Administração Cutânea , Aloxano/administração & dosagem , Aloxano/toxicidade , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Humanos , Masculino , Camundongos , Agonistas do Receptor Purinérgico P2Y/uso terapêutico , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia
6.
Cell Mol Neurobiol ; 41(3): 525-536, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32415577

RESUMO

Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and ß1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with ß1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.


Assuntos
Microdomínios da Membrana/metabolismo , Bulbo Olfatório/citologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Colesterol/metabolismo , Proteínas do Citoesqueleto/metabolismo , Gangliosídeos/metabolismo , Microdomínios da Membrana/ultraestrutura , Ratos Wistar , Proteínas S100/metabolismo
7.
Cancers (Basel) ; 12(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545405

RESUMO

Neutrophil extracellular traps (NETs) have been associated with several steps of tumor progression, including primary growth and metastasis. One of the key features for the acquisition of the metastatic ability is the epithelial-mesenchymal transition (EMT), a complex cellular program. In this study, we evaluated the ability of isolated NETs in modulating the pro-metastatic phenotype of human breast cancer cells. Tumor cells were treated with isolated NETs and then samples were generated for cell migration, quantitative RT-PCR, western blotting, immunofluorescence, and flow cytometry assays. RNA-seq data from The Cancer Genome Atlas (TCGA) database were assessed. NETs changed the typical epithelial morphology of MCF7 cells into a mesenchymal phenotype, a process that was accompanied by enhanced migratory properties. Additional EMT traits were observed: increased expression of N-cadherin and fibronectin, while the E-cadherin expression was repressed. Notably, NETs positively regulated the gene expression of several factors linked to the pro-inflammatory and pro-metastatic properties. Analyses of TCGA data showed that samples from breast cancer patients exhibit a significant correlation between pro-tumoral and neutrophil signature gene expression, including several EMT and pro-metastatic factors. Therefore, NETs drive pro-metastatic phenotype in human breast cancer cells through the activation of the EMT program.

8.
Biomed Res Int ; 2020: 5393041, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149115

RESUMO

Resveratrol (Resv) offers health benefits in cancer and has been reported to modulate important enzymes of lipid metabolism. Studies of its effects on lipid composition in different subtypes of breast-cancer cells are scarce. Thus, we investigated the alterations in phospholipids (PL), fatty acids (FA), and lipid metabolism enzymes in two breast-cancer cell lines after Resv treatment. MCF-7 and MDA-MB-231 cells were treated with 80 and 200 µM of Resv, respectively, for 24 hours. We analyzed PL with radiolabeled inorganic phosphate (32Pi) by thin-layer chromatography, FA by gas chromatography-mass spectrometry, and lipid metabolism enzymes (DGAT2, FAS, ρACCß, pAMPKα, and AMPK) by Western blot. Resv treated MDA-MB-231 phospholipids showed a reduction in phosphatidylcholine (63%) and phosphatidylethanolamine (35%). We observed an increase in eicosapentaenoic acid (EPA) (73%) and docosahexaenoic acid (DHA) (65%) in MCF-7 cells after Resv treatment. Interestingly, the same treatment caused 50% and 90% increases in EPA and DHA, respectively, in MDA-MB-231 cells. In MCF-7 cells, Resv increased the expression of ρACCß (3.3-fold) and AMPKα/ρAMPKα (1.5-fold) and in MDA-MB-231 cells it inhibited the expression of ρACCß (111.8-fold) and AMPKα/ρAMPKα (1.2 fold). Our results show that Resv modified PL and saturated and unsaturated FA especially in MDA-MB-231 cells, and open new perspectives to the understanding of the reported anticancer effect of Resv on these cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Feminino , Humanos , Lipídeos/análise , Células MCF-7 , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Resveratrol/uso terapêutico
9.
J Morphol ; 281(2): 183-195, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854473

RESUMO

Epithelial and mesenchymal cell types are basic for animal multicellularity and they have complementary functions coordinated by cellular interactions. Sponges are especially important model organisms to address the evolutionary basis of morphogenetic programs for epithelial and mesenchymal organization in animals. Evolutionary studies in sponges can contribute to the understanding of the mechanisms that control tissue maintenance and tumor progression in humans. In the present study, sponge mesenchymal and epithelial cells were isolated from the demosponge Hymeniacidon heliophila, and aggregate formation was observed by video microscopy. Epithelial-mesenchymal interaction, epithelial transition, and cell migration led to sponge cell aggregation after drastic stress. Based on their different morphologies, adhesion specificities, and motilities, we suggest a role for different sponge cell types as well as complementary functions in cell aggregation. Micromanipulation under the microscope and cell tracking were also used to promote specific grafting-host interaction, to further test the effects of cell type interaction. The loss of cell polarity and flattened shape during the epithelial to mesenchymal cell transition generated small immobile aggregates of round/amoeboid cells. The motility of these transited epithelial-cell aggregates was observed by cell tracking using fluorescent dye, but only after interaction with streams of migratory mesenchymal cells. Cell motility occurred independently of morphological changes, indicating a progressive step in the transition toward a migratory mesenchymal state. Our data suggest a two-step signaling process: (a) the lack of interaction between mesenchymal and epithelial cells triggers morphological changes; and (b) migratory mesenchymal cells instruct epithelial cells for directional cell motility. These results could have an impact on the understanding of evolutionary aspects of metastatic cancer cells. HIGHLIGHTS: Morphogenetic movements observed in modern sponges could have a common evolutionary origin with collective cell migration of human metastatic cells. A sponge regenerative model was used here to characterize epithelial and mesenchymal cells, and for the promotion of grafting/host interactions with subsequent cell tracking. The transition from epithelial to mesenchymal cell type can be observed in sponges in two steps: (a) withdrawal of epithelial/mesenchymal cell interactions to trigger morphological changes; (b) migratory mesenchymal cells to induce epithelial cells to a collective migratory state.


Assuntos
Movimento Celular , Forma Celular , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Mesoderma/citologia , Poríferos/citologia , Animais , Agregação Celular , Células Epiteliais/ultraestrutura , Mesoderma/ultraestrutura , Poríferos/ultraestrutura
10.
Mem. Inst. Oswaldo Cruz ; 115: e190398, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1091238

RESUMO

BACKGROUND Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-β-cyclodextrin (MβCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Assuntos
Humanos , Recém-Nascido , Streptococcus agalactiae/patogenicidade , Virulência , Microdomínios da Membrana/virologia , Células Endoteliais/virologia , Lipídeos de Membrana , Streptococcus agalactiae/genética
11.
Sci Rep ; 9(1): 13960, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562347

RESUMO

Flotillin-1 and flotillin-2 are highly conserved proteins that localize into cholesterol-rich microdomains in cellular membranes. Flotillins are closely related to the occurrence and development of various types of human cancers. Flotillin-1 is highly expressed in breast cancer, and the high expression level of flotillin-1 is significantly correlated with poorer patient survival. Here we studied the relationship between the formation of lipid rafts and the expression of flotillins and lipids in human breast cancer cells. We used the polyphenol compound resveratrol to alter the structure and function of the plasma membrane. Our data revealed an increase in fatty acids in MCF-7 and MDA-MB-231 cells upon resveratrol treatment. Interestingly, we also found an increase in the expression of both flotillin-1 and flotillin-2 in breast tumor cells after treatment. Resveratrol also induced changes in the pattern of flotillin distribution among detergent-resistant lipid rafts fractions in both cell lines and induced the nuclear translocation of flotillin-2. Since resveratrol has been pointed out as a putative cancer therapy agent, our results could have an impact on the understanding of the effects of resveratrol in tumor cells.


Assuntos
Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Resveratrol/farmacologia , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Humanos , Células MCF-7 , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo
12.
Sci Rep ; 9(1): 1986, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760802

RESUMO

Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice. In our study, multiple mitochondrial respiratory parameters were investigated in permeabilized muscle fibers from 12-week-old animals, a critical age where muscle regeneration is observed in the mdx mouse. Using substrates of complex I and complex II from the electron transport chain, ADP and mitochondrial inhibitors, we found in the mdx EDL, but not in the mdx soleus, a reduction in coupled respiration suggesting that ATP synthesis is affected. In addition, the oxygen consumption after addition of complex II substrate is reduced in mdx EDL; the maximal consumption rate (measured in the presence of uncoupler) also seems to be reduced. Mitochondria are involved in calcium regulation and we observed, using alizarin stain, calcium deposits in mdx muscles but not in control muscles. Interestingly, more calcium deposits were found in mdx EDL than in mdx soleus. These data provide evidence that in 12-week-old mdx mice, calcium is accumulated and mitochondrial function is disturbed in the fast-twitch muscle EDL, but not in the slow-twitch muscle soleus.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Distrofia Muscular Animal/patologia , Trifosfato de Adenosina/biossíntese , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia , Consumo de Oxigênio/fisiologia , Regeneração/fisiologia
13.
Biochem Biophys Res Commun ; 507(1-4): 496-502, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30449599

RESUMO

The Sonic Hedgehog signaling (Shh) pathway has been implicated in both proliferation of myoblast cells and terminal differentiation of muscle fibers, and contradictory results of these effects have been described. To clarify the role of Shh during myogenesis, we decided to study the effects of recombinant Shh and the distribution of Gli-1 during in vitro and in situ embryonic chick skeletal muscle differentiation at later stages of development. Gli-1 was found in small aggregates near the nucleus in mononucleated myoblasts and in multinucleated myotubes both in vitro and in situ chick muscle cells. Some Gli-1 aggregates colocalized with gamma-tubulin positive-centrosomes. Gli-1 was also found in striations and at the subsarcolemmal membrane in muscle fibers in situ. Recombinant Shh added to in vitro grown muscle cells induced the nuclear translocation of Gli-1, as well as an increase in the number of myoblasts and in the number of nuclei within myotubes. We suggest that Gli-1 aggregates observed in chick muscle cells near the nuclei of myoblasts and myotubes could be a storage site for the rapid cellular redistribution of Gli-1 upon specific signals during muscle differentiation.


Assuntos
Proteínas Hedgehog/metabolismo , Desenvolvimento Muscular , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Núcleo Celular/metabolismo , Proliferação de Células , Centrossomo/metabolismo , Embrião de Galinha , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Agregados Proteicos , Transporte Proteico , Sarcolema/metabolismo
14.
J Enzyme Inhib Med Chem ; 33(1): 1181-1193, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30044647

RESUMO

In this study, we synthesized a new congener series of N-sulphonylhydrazones designed as candidate ROCK inhibitors using the molecular hybridization of the clinically approved drug fasudil (1) and the IKK-ß inhibitor LASSBio-1524 (2). Among the synthesized compounds, the N-methylated derivative 11 (LASSBio-2065) showed the best inhibitory profile for both ROCK isoforms, with IC50 values of 3.1 and 3.8 µM for ROCK1 and ROCK2, respectively. Moreover, these compounds were also active in the scratch assay performed in human breast cancer MDA-MB 231 cells and did not display toxicity in MTT and LDH assays. Molecular modelling studies provided insights into the possible binding modes of these N-sulphonylhydrazones, which present a new molecular architecture capable of being optimized and developed as therapeutically useful ROCK inhibitors.


Assuntos
Hidrazonas/química , Isoquinolinas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Modelos Moleculares , Difração de Pó , Análise Espectral/métodos
15.
Biochem Biophys Res Commun ; 502(1): 137-144, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787758

RESUMO

Extracellular vesicles, such as microvesicles (MVs), were identified as important players in tumor progression and acquisition of an aggressive phenotype. Tissue factor (TF) is a transmembrane protein that initiates the blood coagulation cascade. In tumor cells, TF has been associated with aggressiveness and cancer progression. Previous studies demonstrate that TF is incorporated into MVs secreted by tumor cells; however, it is unknown whether TF is actively involved in the release of MVs. Here, we investigated the influence of TF expression on the release of MVs. TF silencing was achieved through CRISPR/Cas9 approaches in the human breast cancer cell line, MDA-MB-231. TF knockout in MDA-MB-231 cells efficiently reduced TF-dependent signaling and procoagulant activity. Remarkably, silencing of TF caused a significant decrease in the number of MVs released by MDA-MB-231 cells. We also observed an increase in actin-positive membrane projections in TF knockout cells and a reduction in RhoA expression when compared to TF-expressing cells. Treatment of MDA-MB-231 cells with the RhoA-ROCK signaling pathway inhibitor, fasudil, significantly reduced the release of MVs. Taken together, our results suggest a novel and relevant role for TF in tumor biology by playing an active role in the MVs secretion.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Tromboplastina/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Vesículas Extracelulares/genética , Fator VIIa/análise , Fator VIIa/metabolismo , Feminino , Inativação Gênica , Humanos , Transdução de Sinais , Tromboplastina/genética , Quinases Associadas a rho/análise , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/análise , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Sci Rep ; 7(1): 13723, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057980

RESUMO

Tumor aggressiveness is usually associated with metastasis. MDA-MB 231, a triple-negative breast cancer (TNBC), is an aggressive type of breast cancer and associated with early metastasis. The Rho/ROCK pathway is a key regulator of cell motility involving cytoskeleton regulation through stabilization of actin filaments and stress fiber formation. In this study we show that Fasudil, a ROCK inhibitor, inhibited the migration of MDA-MB 231 and A549 cells, without altering the viability of these cells at the concentration of 10 µM, modified tumor cell morphology, with disorganization of stress fibers and promotes activation of the canonical-Wnt/beta-catenin pathway. Therefore, Fasudil present a promising approach to the prevention of breast cancer metastasis through a different mechanism of action from the well-known one.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica/fisiopatologia , Metástase Neoplásica/prevenção & controle , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo
17.
Am J Physiol Cell Physiol ; 313(1): C11-C26, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381519

RESUMO

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


Assuntos
Aldeído Oxirredutases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Animais , Diferenciação Celular , Fusão Celular , Embrião de Galinha , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo , S-Nitrosotióis/farmacologia , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Tionucleotídeos/farmacologia , Triazenos/farmacologia
18.
Stem Cells Int ; 2016: 3865315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28053606

RESUMO

Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of ß-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce ß-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced ß-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling ß-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.

19.
PLoS One ; 10(3): e0120940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775465

RESUMO

The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 µM) and analyzed. Our results show that 0.01, 0.1 and 1 µM ouabain did not induce changes in cell viability, whereas 10 µM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 µM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 µM ouabain did not alter cell viability. Our results show that the 10 µM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.


Assuntos
Desenvolvimento Muscular , Mioblastos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases , Mioblastos/citologia , Mioblastos/enzimologia , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
20.
Ultrasound Med Biol ; 40(3): 504-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412173

RESUMO

Therapeutic ultrasound (TU) has been used for the last 50 y in rehabilitation, including treatment of soft tissues. Ultrasound waves can be employed in two different modes of operation, continuous and pulsed, which produce both thermal and non-thermal effects. Despite the large-scale use of TU, there are few scientific studies on its biologic effects during skeletal muscle differentiation. To better analyze the cellular effects of TU, we decided to follow cells in vitro. The main purpose of this study was to evaluate the effects of TU in primary chick myogenic cell cultures using phase contrast optical microscopy and immunofluorescence microscopy, followed by image analysis and quantification. Our results indicate that TU can stimulate the differentiation of skeletal muscle cells in vitro, as measured by the thickness of multinucleated myotubes, the ratio of mononucleated cells to multinucleated cells and expression of the muscle-specific protein desmin. This study is a first step toward a metrologic and science-based protocol for cell treatment under different ultrasound field exposures.


Assuntos
Diferenciação Celular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Mioblastos Esqueléticos/fisiologia , Terapia por Ultrassom/métodos , Animais , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Embrião de Galinha , Relação Dose-Resposta à Radiação , Ondas de Choque de Alta Energia , Fibras Musculares Esqueléticas/efeitos da radiação , Mioblastos Esqueléticos/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA