Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34841431

RESUMO

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Assuntos
Integrinas , Túbulos Renais Coletores , Animais , Células Epiteliais , Inflamação/genética , Integrina alfa3beta1 , Integrinas/genética , Laminina/genética , Camundongos , NF-kappa B/genética
2.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647970

RESUMO

A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.


Assuntos
Actomiosina/metabolismo , Túbulos Renais Coletores/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miosina Tipo II/metabolismo , Transdução de Sinais/fisiologia
4.
Nat Commun ; 9(1): 814, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483507

RESUMO

Polycystic kidney disease (PKD) is a common genetic disorder characterized by the growth of fluid-filled cysts in the kidneys. Several studies reported that the serine-threonine kinase Lkb1 is dysregulated in PKD. Here we show that genetic ablation of Lkb1 in the embryonic ureteric bud has no effects on tubule formation, maintenance, or growth. However, co-ablation of Lkb1 and Tsc1, an mTOR repressor, results in an early developing, aggressive form of PKD. We find that both loss of Lkb1 and loss of Pkd1 render cells dependent on glutamine for growth. Metabolomics analysis suggests that Lkb1 mutant kidneys require glutamine for non-essential amino acid and glutathione metabolism. Inhibition of glutamine metabolism in both Lkb1/Tsc1 and Pkd1 mutant mice significantly reduces cyst progression. Thus, we identify a role for Lkb1 in glutamine metabolism within the kidney epithelia and suggest that drugs targeting glutamine metabolism may help reduce cyst number and/or size in PKD.


Assuntos
Glutamina/metabolismo , Doenças Renais Policísticas/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Quinases Ativadas por AMP , Animais , Progressão da Doença , Feminino , Humanos , Rim/embriologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Proteínas Serina-Treonina Quinases/genética
5.
Development ; 144(22): 4148-4158, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993400

RESUMO

Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and ß subunits; crucial integrins in the kidney collecting system express the ß1 subunit. The ß1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the ß1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the ß1 integrin subunit NPxY motif.


Assuntos
Integrina beta1/metabolismo , Morfogênese , Talina/metabolismo , Ureter/citologia , Ureter/embriologia , Junções Aderentes/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Adesão Celular , Membrana Celular/metabolismo , Polaridade Celular , Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/química , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/embriologia , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ureter/metabolismo
6.
Matrix Biol ; 57-58: 244-257, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043890

RESUMO

Laminins are a major constituent of the basement membranes of the kidney collecting system. Integrins, transmembrane receptors formed by non-covalently bound α and ß subunits, serve as laminin receptors, but their role in development and homeostasis of the kidney collecting system is poorly defined. Integrin α3ß1, one of the major laminin receptors, plays a minor role in kidney collecting system development, while the role of α6 containing integrins (α6ß1 and α6ß4), the other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In this study, we show that selectively deleting the α6 or ß4 integrin subunits at the initiation of ureteric bud development in mice does not affect morphogenesis. However, the collecting system becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes was also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude that α6 integrins are important for maintaining the integrity of the kidney collecting system by enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a mechanistic explanation for the association between kidney collecting system abnormalities in patients and epidermolysis bullosa.


Assuntos
Membrana Basal/metabolismo , Integrina alfa6beta1/genética , Integrina alfa6beta4/genética , Túbulos Renais Coletores/metabolismo , Laminina/genética , Obstrução Ureteral/metabolismo , Animais , Apoptose , Membrana Basal/patologia , Adesão Celular , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Integrina alfa6beta1/deficiência , Integrina alfa6beta4/deficiência , Túbulos Renais Coletores/patologia , Laminina/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Transdução de Sinais , Ureter/cirurgia , Obstrução Ureteral/patologia , Obstrução Ureteral/cirurgia
7.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490995

RESUMO

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/genética , Células Epiteliais/citologia , Camundongos , Proteína cdc42 de Ligação ao GTP/genética
8.
Mol Biol Cell ; 26(10): 1857-74, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808491

RESUMO

The collecting system of the kidney develops from the ureteric bud (UB), which undergoes branching morphogenesis, a process regulated by multiple factors, including integrin-extracellular matrix interactions. The laminin (LM)-binding integrin α3ß1 is crucial for this developmental program; however, the LM types and LM/integrin α3ß1-dependent signaling pathways are poorly defined. We show that α3 chain-containing LMs promote normal UB branching morphogenesis and that LM-332 is a better substrate than LM-511 for stimulating integrin α3ß1-dependent collecting duct cell functions. We demonstrate that integrin α3ß1-mediated cell adhesion to LM-332 modulates Akt activation in the developing collecting system and that Akt activation is PI3K independent but requires decreased PTEN activity and K63-linked polyubiquitination. We identified the ubiquitin-modifying enzyme TRAF6 as an interactor with the integrin ß1 subunit and regulator of integrin α3ß1-dependent Akt activation. Finally, we established that the developmental defects of TRAF6- and integrin α3-null mouse kidneys are similar. Thus K63-linked polyubiquitination plays a previously unrecognized role in integrin α3ß1-dependent cell signaling required for UB development and may represent a novel mechanism whereby integrins regulate signaling pathways.


Assuntos
Integrina alfa3beta1/metabolismo , Túbulos Renais Coletores/embriologia , Morfogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Túbulos Renais Coletores/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
9.
J Biol Chem ; 289(12): 8532-44, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24509849

RESUMO

Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin ß1 subunit in these cells converts them from a "loose" epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a "tight" epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin ß1 cytoplasmic tail and does not entail ß1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the ß1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin ß1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells.


Assuntos
Deleção de Genes , Integrina beta1/genética , Integrina beta1/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Claudina-2/genética , Claudina-2/metabolismo , Regulação para Baixo , Células Epiteliais/metabolismo , Integrina beta1/análise , Camundongos , Permeabilidade , Regulação para Cima , Urina/química
10.
Mol Cell Biol ; 32(20): 4080-91, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869523

RESUMO

Loss of ß1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal ß1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal ß1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to ß1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal ß1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter ß1 structure or interactions between α and ß1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the ß1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated ß3 integrin tail. Finally, tyrosine mutations of ß1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.


Assuntos
Integrina beta1/metabolismo , Túbulos Renais Coletores/crescimento & desenvolvimento , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Citosol/metabolismo , Humanos , Integrina beta1/genética , Integrina beta3/química , Integrina beta3/metabolismo , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Talina/química , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
11.
Cancer Res ; 68(15): 6127-35, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676835

RESUMO

The collagen IV binding receptor integrin alpha1beta1 has been shown to regulate lung cancer due to its proangiogenic properties; however, it is unclear whether this receptor also plays a direct role in promoting primary lung tumors. To investigate this possibility, integrin alpha1-null mice were crossed with KrasLA2 mice that carry an oncogenic mutation of the Kras gene (G12D) and develop spontaneous primary tumors with features of non-small cell lung cancer. We provide evidence that KrasLA2/alpha1-null mice have a decreased incidence of primary lung tumors and longer survival compared with KrasLA2/alpha1 wild-type controls. Tumors from KrasLA2/alpha1-null mice were also smaller, less vascularized, and exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase-mediated dUTP nick-end staining, respectively. Moreover, tumors from the KrasLA2/alpha1-null mice showed diminished extracellular signal-regulated kinase (ERK) but enhanced p38 mitogen-activated protein kinase activation. Primary lung tumor epithelial cells isolated from KrasLA2/alpha1-null mice showed a significant decrease in anchorage-independent colony formation, collagen-mediated cell proliferation, ERK activation, and, most importantly, tumorigenicity when injected into nude mice compared with KrasLA2/alpha1 wild-type tumor cells. These results indicate that loss of the integrin alpha1 subunit decreases the incidence and growth of lung epithelial tumors initiated by oncogenic Kras, suggesting that both Kras and integrin alpha1beta1 cooperate to drive the growth of non-small cell lung cancer in vivo.


Assuntos
Genes ras , Integrina alfa1beta1/fisiologia , Neoplasias Pulmonares/genética , Animais , Adesão Celular , Proliferação de Células , Colágeno Tipo IV/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Integrina alfa1beta1/genética , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA