Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378697

RESUMO

Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Imunoterapia , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral
2.
Adv Mater ; 36(26): e2313226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419362

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.


Assuntos
Células Apresentadoras de Antígenos , Imunoterapia Adotiva , Nanopartículas , RNA Mensageiro , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Nanopartículas/química , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Linhagem Celular Tumoral , Lipídeos/química , Transfecção/métodos , Lipossomos
3.
Theranostics ; 14(1): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164140

RESUMO

Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.


Assuntos
Ácidos e Sais Biliares , Nanopartículas , RNA Mensageiro/metabolismo , Lipídeos , Colesterol , Ácidos Cólicos , RNA Interferente Pequeno/genética
4.
Res Sq ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398248

RESUMO

Acquired resistance to immune checkpoint immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we found that tumors underwent an epithelial-to-mesenchymal transition (EMT) that resulted in reduced sensitivity to T cell-mediated killing. EMT-transcription factors (EMT-TFs) ZEB1 and SNAIL function as master genetic and epigenetic regulators of this tumor-intrinsic effect. Acquired resistance was not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, EMT was associated with epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), which renders tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings show how resistance to immunotherapy in PDAC can be acquired through plasticity programs that render tumor cells impervious to T cell killing.

5.
Nat Immunol ; 20(4): 503-513, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778242

RESUMO

Two-photon excitation microscopy (TPEM) has revolutionized the understanding of adaptive immunity. However, TPEM usually requires animal models and is not amenable to the study of human disease. The recognition of antigen by T cells requires cell contact and is associated with changes in T cell shape. We postulated that by capturing these features in fixed tissue samples, we could quantify in situ adaptive immunity. Therefore, we used a deep convolutional neural network to identify fundamental distance and cell-shape features associated with cognate help (cell-distance mapping (CDM)). In mice, CDM was comparable to TPEM in discriminating cognate T cell-dendritic cell (DC) interactions from non-cognate T cell-DC interactions. In human lupus nephritis, CDM confirmed that myeloid DCs present antigen to CD4+ T cells and identified plasmacytoid DCs as an important antigen-presenting cell. These data reveal a new approach with which to study human in situ adaptive immunity broadly applicable to autoimmunity, infection, and cancer.


Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Microscopia de Fluorescência por Excitação Multifotônica , Linfócitos T/imunologia , Animais , Núcleo Celular/ultraestrutura , Células Dendríticas/citologia , Humanos , Nefrite Lúpica/imunologia , Camundongos , Camundongos Transgênicos , Redes Neurais de Computação , Linfócitos T/citologia , Linfócitos T/ultraestrutura
6.
Oncotarget ; 9(38): 25332-25341, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861875

RESUMO

Signal transduction through the constitutively activated B cell receptor (BCR) plays a key role in the pathogenesis of B-cell tumors by promoting survival and proliferation of malignant B cells. The BCR signaling pathway is known to be deregulated in Mantle Cell Lymphoma (MCL) due to mutations or epigenetic events that impact regulatory proteins. One such protein is Bruton's tyrosine kinase (BTK), an integral component of the BCR signaling pathway. The success of ibrutinib, a BTK inhibitor, and other drugs that target components of the BCR pathway is evidence that regulation of the BCR signaling pathway is an effective method of MCL treatment. The complexity of the pathway indicates that it contains other potential therapeutic targets for the treatment of MCL. This is supported by recent and ongoing clinical trials of inhibitors of molecules such as PI3K, BCL-2, and BTK that show promising initial results. Additionally, agents that target different points of the pathway may have synergistic effects when used in combination. This review provides a description of the BCR signaling pathway on the molecular level followed by an explanation of its relationship to MCL. The role of the BCR signaling pathway in the pathogenesis of MCL is explained through an overview of the drugs that target BCR signaling in MCL treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA