Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Oncogene ; 42(31): 2374-2385, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386128

RESUMO

Tuft cells are chemosensory epithelial cells that increase in number following infection or injury to robustly activate the innate immune response to alleviate or promote disease. Recent studies of castration resistant prostate cancer and its subtype, neuroendocrine prostate cancer, revealed Pou2f3+ populations in mouse models. The transcription factor Pou2f3 is a master regulator of the tuft cell lineage. We show that tuft cells are upregulated early during prostate cancer development, and their numbers increase with progression. Cancer-associated tuft cells in the mouse prostate express DCLK1, COX1, COX2, while human tuft cells express COX1. Mouse and human tuft cells exhibit strong activation of signaling pathways including EGFR and SRC-family kinases. While DCLK1 is a mouse tuft cell marker, it is not present in human prostate tuft cells. Tuft cells that appear in mouse models of prostate cancer display genotype-specific tuft cell gene expression signatures. Using bioinformatic analysis tools and publicly available datasets, we characterized prostate tuft cells in aggressive disease and highlighted differences between tuft cell populations. Our findings indicate that tuft cells contribute to the prostate cancer microenvironment and may promote development of more advanced disease. Further research is needed to understand contributions of tuft cells to prostate cancer progression.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Camundongos , Humanos , Animais , Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Epiteliais/metabolismo , Microambiente Tumoral , Quinases Semelhantes a Duplacortina
2.
Cancer Res ; 82(13): 2458-2471, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35583996

RESUMO

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE: This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.


Assuntos
Neoplasias da Mama , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead , Animais , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box M1/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transdução de Sinais , Transcrição Gênica
3.
Nat Cell Biol ; 24(1): 35-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027734

RESUMO

Vascular endothelial growth factor receptor type 2 (VEGFR2, also known as KDR and FLK1) signalling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species and copper (Cu) are also involved in these processes. However, their inter-relationship is poorly understood. Evidence of the role of the endothelial Cu importer CTR1 (also known as SLC31A1) in VEGFR2 signalling and angiogenesis in vivo is lacking. Here, we show that CTR1 functions as a redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signalling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 at its cytosolic C terminus after stimulation with VEGF, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signalling. In vivo, EC-specific Ctr1-deficient mice or CRISPR-Cas9-generated redox-dead Ctr1(C187A)-knockin mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signalling to enhance angiogenesis. Our study uncovers an important mechanism for sensing reactive oxygen species through CTR1 to drive neovascularization.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Linhagem Celular , Transportador de Cobre 1/genética , Cisteína/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Transdução de Sinais/fisiologia
4.
Nat Cell Biol ; 22(4): 389-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231305

RESUMO

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/ß and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/ß and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3α/ß and stabilize ß-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores de Netrina/genética , Netrina-1/genética , Receptores de Superfície Celular/genética , Via de Sinalização Wnt/genética , Animais , Linhagem Celular , Embrião de Mamíferos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Receptores de Superfície Celular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Cell Stem Cell ; 25(2): 210-224.e6, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31104942

RESUMO

Progression through states of pluripotency is required for cells in early mammalian embryos to transition away from heightened self-renewal and toward competency for lineage specification. Here, we use a CRISPR mutagenesis screen in mouse embryonic stem cells (ESCs) to identify unexpected roles for nuclear export and intracellular Ca2+ homeostasis during the exit out of the naive state of pluripotency. Mutation of a plasma membrane Ca2+ pump encoded by Atp2b1 increased intracellular Ca2+ such that it overcame effects of intracellular Ca2+ reduction, which is required for naive exit. Persistent self-renewal of ESCs was supported both in Atp2b1-/-Tcf7l1-/- double-knockout ESCs passaged in defined media alone (no LIF or inhibitors) and in wild-type cells passaged in media containing only calcitonin and a GSK3 inhibitor. These new findings suggest a central role for intracellular Ca2+ in safeguarding naive pluripotency.


Assuntos
Sinalização do Cálcio/fisiologia , Espaço Intracelular/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células-Tronco Pluripotentes/fisiologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quinase 3 da Glicogênio Sintase/metabolismo , Homeostase , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética
6.
Cell Rep ; 25(3): 571-584.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332639

RESUMO

Wnt/ß-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/ß-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/ß-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/ß-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with ß-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/ß-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Músculo Liso Vascular/citologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt
7.
Cancer Res ; 78(6): 1549-1560, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343523

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common type of pediatric cancer, although about 4 of every 10 cases occur in adults. The enzyme drug l-asparaginase serves as a cornerstone of ALL therapy and exploits the asparagine dependency of ALL cells. In addition to hydrolyzing the amino acid l-asparagine, all FDA-approved l-asparaginases also have significant l-glutaminase coactivity. Since several reports suggest that l-glutamine depletion correlates with many of the side effects of these drugs, enzyme variants with reduced l-glutaminase coactivity might be clinically beneficial if their antileukemic activity would be preserved. Here we show that novel low l-glutaminase variants developed on the backbone of the FDA-approved Erwinia chrysanthemi l-asparaginase were highly efficacious against both T- and B-cell ALL, while displaying reduced acute toxicity features. These results support the development of a new generation of safer l-asparaginases without l-glutaminase activity for the treatment of human ALL.Significance: A new l-asparaginase-based therapy is less toxic compared with FDA-approved high l-glutaminase enzymes Cancer Res; 78(6); 1549-60. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Recombinantes/metabolismo , Animais , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/farmacocinética , Linhagem Celular Tumoral , Feminino , Glutaminase/metabolismo , Glutamina/sangue , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Cancer Res ; 77(23): 6562-6575, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021137

RESUMO

Deregulation of the Wnt/ß-catenin signaling pathway drives the development of colorectal cancer, but understanding of this pathway remains incomplete. Here, we report that the damage-specific DNA-binding protein DDB2 is critical for ß-catenin-mediated activation of RNF43, which restricts Wnt signaling by removing Wnt receptors from the cell surface. Reduced expression of DDB2 and RNF43 was observed in human hyperplastic colonic foci. DDB2 recruited EZH2 and ß-catenin at an upstream site in the Rnf43 gene, enabling functional interaction with distant TCF4/ß-catenin-binding sites in the intron of Rnf43 This novel activity of DDB2 was required for RNF43 function as a negative feedback regulator of Wnt signaling. Mice genetically deficient in DDB2 exhibited increased susceptibility to colon tumor development in a manner associated with higher abundance of the Wnt receptor-expressing cells and greater activation of the downstream Wnt pathway. Our results identify DDB2 as both a partner and regulator of Wnt signaling, with an important role in suppressing colon cancer development. Cancer Res; 77(23); 6562-75. ©2017 AACR.


Assuntos
Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas/metabolismo , Via de Sinalização Wnt/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Enzimática , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligases , beta Catenina/metabolismo
9.
Sci Rep ; 7: 42127, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198371

RESUMO

Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Edição de Genes/métodos , Lentivirus/genética , Mutagênese Sítio-Dirigida/métodos , Receptor TIE-2/genética , Adenoviridae/metabolismo , Permeabilidade da Membrana Celular , Endonucleases/genética , Endonucleases/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lentivirus/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Mutação , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Receptor TIE-2/deficiência , Transdução de Sinais , Trombina/farmacologia
10.
Proc Natl Acad Sci U S A ; 113(5): E548-57, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26764381

RESUMO

Aberrant embryonic development of the hypothalamus and/or pituitary gland in humans results in congenital hypopituitarism (CH). Transcription factor 7-like 1 (TCF7L1), an important regulator of the WNT/ß-catenin signaling pathway, is expressed in the developing forebrain and pituitary gland, but its role during hypothalamo-pituitary (HP) axis formation or involvement in human CH remains elusive. Using a conditional genetic approach in the mouse, we first demonstrate that TCF7L1 is required in the prospective hypothalamus to maintain normal expression of the hypothalamic signals involved in the induction and subsequent expansion of Rathke's pouch progenitors. Next, we reveal that the function of TCF7L1 during HP axis development depends exclusively on the repressing activity of TCF7L1 and does not require its interaction with ß-catenin. Finally, we report the identification of two independent missense variants in human TCF7L1, p.R92P and p.R400Q, in a cohort of patients with forebrain and/or pituitary defects. We demonstrate that these variants exhibit reduced repressing activity in vitro and in vivo relative to wild-type TCF7L1. Together, our data provide support for a conserved molecular function of TCF7L1 as a transcriptional repressor during HP axis development in mammals and identify variants in this transcription factor that are likely to contribute to the etiology of CH.


Assuntos
Sistema Hipotálamo-Hipofisário , Proteína 1 Semelhante ao Fator 7 de Transcrição/fisiologia , Animais , Estudos de Coortes , Humanos , Camundongos , Hipófise/anormalidades , Hipófise/metabolismo , Hipófise/fisiopatologia , Prosencéfalo/anormalidades , Prosencéfalo/metabolismo
11.
Cell Rep ; 4(1): 1-9, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810553

RESUMO

Wnt/ß-catenin signal transduction requires direct binding of ß-catenin to Tcf/Lef proteins, an event that is classically associated with stimulating transcription by recruiting coactivators. This molecular cascade plays critical roles throughout embryonic development and normal postnatal life by affecting stem cell characteristics and tumor formation. Here, we show that this pathway utilizes a fundamentally different mechanism to regulate Tcf7l1 (formerly named Tcf3) activity. ß-catenin inactivates Tcf7l1 without a switch to a coactivator complex by removing it from DNA, which leads to Tcf7l1 protein degradation. Mouse genetic experiments demonstrate that Tcf7l1 inactivation is the only required effect of the Tcf7l1-ß-catenin interaction. Given the expression of Tcf7l1 in pluripotent embryonic and adult stem cells, as well as in poorly differentiated breast cancer, these findings provide mechanistic insights into the regulation of pluripotency and the role of Wnt/ß-catenin in breast cancer.


Assuntos
Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt , Animais , Cromatina/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , Estabilidade Proteica , Células-Tronco/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/metabolismo
12.
PLoS Genet ; 9(5): e1003424, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23658527

RESUMO

Canonical Wnt signaling plays a rate-limiting role in regulating self-renewal and differentiation in mouse embryonic stem cells (ESCs). We have previously shown that mutation in the Apc (adenomatous polyposis coli) tumor suppressor gene constitutively activates Wnt signaling in ESCs and inhibits their capacity to differentiate towards ecto-, meso-, and endodermal lineages. However, the underlying molecular and cellular mechanisms through which Wnt regulates lineage differentiation in mouse ESCs remain to date largely unknown. To this aim, we have derived and studied the gene expression profiles of several Apc-mutant ESC lines encoding for different levels of Wnt signaling activation. We found that down-regulation of Tcf3, a member of the Tcf/Lef family and a key player in the control of self-renewal and pluripotency, represents a specific and primary response to Wnt activation in ESCs. Accordingly, rescuing Tcf3 expression partially restored the neural defects observed in Apc-mutant ESCs, suggesting that Tcf3 down-regulation is a necessary step towards Wnt-mediated suppression of neural differentiation. We found that Tcf3 down-regulation in the context of constitutively active Wnt signaling does not result from promoter DNA methylation but is likely to be caused by a plethora of mechanisms at both the RNA and protein level as shown by the observed decrease in activating histone marks (H3K4me3 and H3-acetylation) and the upregulation of miR-211, a novel Wnt-regulated microRNA that targets Tcf3 and attenuates early neural differentiation in mouse ESCs. Our data show for the first time that Wnt signaling down-regulates Tcf3 expression, possibly at both the transcriptional and post-transcriptional levels, and thus highlight a novel mechanism through which Wnt signaling inhibits neuro-ectodermal lineage differentiation in mouse embryonic stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Metilação de DNA , Regulação para Baixo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação , Transcrição Gênica
13.
Proc Natl Acad Sci U S A ; 108(29): 11912-7, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730189

RESUMO

The heterochromatin barrier must be overcome to generate induced pluripotent stem cells and cell fusion-mediated reprogrammed hybrids. Here, we show that the absence of T-cell factor 3 (Tcf3), a repressor of ß-catenin target genes, strikingly and rapidly enhances the efficiency of neural precursor cell (NPC) reprogramming. Remarkably, Tcf3(-/-) ES cells showed a genome-wide increase in AcH3 and decrease in H3K9me3 and can reprogram NPCs after fusion greatly. In addition, during reprogramming of NPCs into induced pluripotent stem cells, the silencing of Tcf3 increased AcH3 and decreased the number of H3K9me3-positive heterochromatin foci early and long before reactivation of the endogenous stem cell genes. In conclusion, our data suggest that Tcf3 functions as a repressor of the reprogramming potential of somatic cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Reprogramação Celular/fisiologia , Epigênese Genética/fisiologia , Deleção de Genes , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Reprogramação Celular/genética , Imunoprecipitação da Cromatina , Epigênese Genética/genética , Citometria de Fluxo , Imunofluorescência , Vetores Genéticos/genética , Immunoblotting , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Stem Cells ; 28(10): 1794-804, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20734354

RESUMO

Delineating the signaling pathways that underlie ESC pluripotency is paramount for development of ESC applications in both the research and clinical settings. In culture pluripotency is maintained by leukemia inhibitory factor (LIF) stimulation of two separate signaling axes: Stat3/Klf4/Sox2 and PI3K/Tbx3/Nanog, which converge in the regulation of Oct4 expression. However, LIF signaling is not required in vivo for self-renewal, thus alternate signaling axes likely mediate these pathways. Additional factors that promote pluripotency gene expression have been identified, including the direct regulation of Oct4 by liver receptor homolog-1 (Lrh-1) and ß-catenin regulation of Nanog. Here, we present genetic, molecular, and pharmacological studies identifying a signaling axis in which ß-catenin promotes pluripotency gene expression in an Lrh-1-dependent manner. Furthermore, Lrh-1 was identified as a novel ß-catenin target gene, and Lrh-1 regulation is required for maintaining proper levels of Oct4, Nanog, and Tbx3. Elucidation of this pathway provides an alternate mechanism by which the primary pluripotency axis may be regulated in vivo and may pave the way for small molecule applications to manipulate pluripotency or improve the efficiency of somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Fator 4 Semelhante a Kruppel , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta Catenina/genética
15.
Exp Cell Res ; 316(6): 1050-60, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20006604

RESUMO

A combination of cell intrinsic factors and extracellular signals determine whether mouse embryonic stem cells (ESC) divide, self-renew, and differentiate. Here, we report a new interaction between cell intrinsic aspects of the canonical Wnt/Tcf/beta-catenin signaling pathway and extracellular Lif/Jak/Stat3 stimulation that combines to promote self-renewal and proliferation of ESC. Mutant ESC lacking the Tcf3 transcriptional repressor continue to self-renew in the absence of exogenous Lif and through pharmacological inhibition of Lif/Jak/Stat3 signaling; however, proliferation rates of TCF3-/- ESC were significantly decreased by inhibiting Jak/Stat3 activity. Cell mixing experiments showed that stimulation of Stat3 phosphorylation in TCF3-/- ESC was mediated through secretion of paracrine acting factors, but did not involve elevated Lif or LifR transcription. The new interaction between Wnt and Lif/Jak/Stat3 signaling pathways has potential for new insights into the growth of tumors caused by aberrant activity of Wnt/Tcf/beta-catenin signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proliferação de Células , Células-Tronco Embrionárias/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Piridonas/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Nat Genet ; 41(10): 1068-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19718027

RESUMO

Single-layered embryonic skin either stratifies to form epidermis or responds to Wnt signaling (stabilized beta-catenin) to form hair follicles. Postnatally, stem cells continue to differentially use Wnt signaling in long-term tissue homeostasis. We have discovered that embryonic progenitor cells and postnatal hair follicle stem cells coexpress Tcf3 and Tcf4, which can act as transcriptional activators or repressors. Using loss-of-function studies and transcriptional analyses, we uncovered consequences to the absence of Tcf3 and Tcf4 in skin that only partially overlap with those caused by beta-catenin deficiency. We established roles for Tcf3 and Tcf4 in long-term maintenance and wound repair of both epidermis and hair follicles, suggesting that Tcf proteins have both Wnt-dependent and Wnt-independent roles in lineage determination.


Assuntos
Células Epiteliais/metabolismo , Homeostase , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Pele/metabolismo , Fatores de Transcrição TCF/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição TCF/deficiência , Fatores de Transcrição TCF/genética , Fator de Transcrição 4 , Proteína 1 Semelhante ao Fator 7 de Transcrição , Proteínas Wnt/metabolismo , Cicatrização , beta Catenina/deficiência , beta Catenina/metabolismo
17.
Cell Stem Cell ; 3(5): 465-6, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18983957

RESUMO

Two manuscripts published recently in Cell Stem Cell (Lluis et al., 2008 [this issue]; Marson et al., 2008) show that Wnt-beta-catenin signaling stimulates nuclear reprogramming. These two studies, using distinct reprogramming methods, offer insights into the mechanisms underlying acquisition and maintenance of pluripotency.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Fusão Celular/métodos , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Retroviridae/genética , Transdução Genética/métodos , beta Catenina/genética
18.
Stem Cell Rev ; 3(1): 39-48, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17873380

RESUMO

The Wnt signal transduction pathway has been shown to stimulate stem cell self renewal and has been shown to cause cancer in humans. One interesting aspect of Wnt signaling is that it utilizes downstream DNA-binding transcription factors, called Tcf proteins, which can activate transcription of target genes in the presence of a Wnt signal and repress the expression of target genes in the absence of a Wnt signal. Since Tcf proteins are present in Wnt-stimulated and unstimulated stem cells, understanding how Tcf proteins regulate target gene expression in each state offers the potential to understand how stem cells regulate their self-renewal, differentiation, and proliferation. In this article, we will review recent work elucidating the roles Tcf-protein interactions in the context of stem cells and cancer.


Assuntos
Células-Tronco/fisiologia , Fatores de Transcrição TCF/fisiologia , beta Catenina/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Humanos , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Transcrição TCF/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição , beta Catenina/metabolismo
19.
Front Biosci ; 12: 3321-32, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485302

RESUMO

Although "stem cell biology" is frequently described as a young field, the examination of pluripotency and its effects on embryonic cells has had an interesting and somewhat unusual history. After decades of research into the pluripotency of mammalian embryonic cells, the use of pluripotent cells came into prominence as mouse embryonic stem cells (ESC) provided the foundation of knockout mouse technology; however, the basic biology of pluripotency in embryonic cells was not extensively examined for roughly another twenty years until the creation of human embryonic stem cell lines. With the burgeoning potential of cell based therapies and roles of cancer stem cells in disease, understanding basic biological mechanisms regulating stem cell characteristics now presents great new opportunities. Therefore, it is not surprising that the underlying genetic and epigenetic forces allowing ESC to maintain pluripotency have been the focus of intense scientific scrutiny in recent years. In order to fully appreciate the importance of new discoveries regarding pluripotency in ESC, it is necessary to understand the role of pluripotency in normal embryonic development. The main purpose of this review is to highlight recent discoveries in the context of what was known about pluripotency and lineage commitment in the embryo prior to the bioinformatics and genomics age. In doing so we attempt to elucidate the importance and limitations of recent discoveries and identify important avenues for future research.


Assuntos
Células-Tronco Pluripotentes/citologia , Animais , Linhagem da Célula , Humanos , Camundongos
20.
Development ; 131(2): 263-74, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14668413

RESUMO

The roles of Lef/Tcf proteins in determining cell fate characteristics have been described in many contexts during vertebrate embryogenesis, organ and tissue homeostasis, and cancer formation. Although much of the accumulated work on these proteins involves their ability to transactivate target genes when stimulated by beta-catenin, Lef/Tcf proteins can repress target genes in the absence of stabilized beta-catenin. By ablating Tcf3 function, we have uncovered an important requirement for a repressor function of Lef/Tcf proteins during early mouse development. Tcf3-/- embryos proceed through gastrulation to form mesoderm, but they develop expanded and often duplicated axial mesoderm structures, including nodes and notochords. These duplications are preceded by ectopic expression of Foxa2, an axial mesoderm gene involved in node specification, with a concomitant reduction in Lefty2, a marker for lateral mesoderm. By contrast, expression of a beta-catenin-dependent, Lef/Tcf reporter (TOPGal), is not ectopically activated but is faithfully maintained in the primitive streak. Taken together, these data reveal a unique requirement for Tcf3 repressor function in restricting induction of the anterior-posterior axis.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra , Animais , Padronização Corporal/genética , Sistema Nervoso Central/anormalidades , Proteínas do Citoesqueleto/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Gravidez , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Transativadores/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas Wnt , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA