Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693371

RESUMO

Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.

2.
J Mol Biol ; 432(14): 3989-4009, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32304700

RESUMO

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Peptídeos/farmacologia , Animais , Antígenos CD/química , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Cistina/química , Cistina/genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Neurotensina/química , Neurotensina/farmacologia , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Receptores da Transferrina/química , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/genética
3.
Invest Ophthalmol Vis Sci ; 57(4): 1563-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046121

RESUMO

PURPOSE: Abnormal retinal angiogenesis leads to visual impairment and blindness. Understanding how retinal vessels develop normally has dramatically improved treatments for people with retinal vasculopathies, but additional information about development is required. Abnormal neuron patterning in the outer retina has been shown to result in abnormal vessel development and blindness, for example, in people and mouse models with Crumbs homologue 1 (CRB1) mutations. In this study, we report and characterize a mouse model of inner retinal lamination disruption and bleeding, the Down syndrome cell adhesion molecule (Dscam) mutant, and test how neuron-neurite placement within the inner retina guides development of intraretinal vessels. METHODS: Bax mutant mice (increased neuron cell number), Dscam mutant mice (increased neuron cell number, disorganized lamination), Fat3 mutant mice (disorganized neuron lamination), and Dscam gain-of-function mice (Dscam(GOF)) (decreased neuron cell number) were used to manipulate neuron placement and number. Immunohistochemistry was used to assay organization of blood vessels, glia, and neurons. In situ hybridization was used to map the expression of angiogenic factors. RESULTS: Significant changes in the organization of vessels within mutant retinas were found. Displaced neurons and microglia were associated with the attraction of vessels. Using Fat3 mutant and Dscam(GOF) retinas, we provide experimental evidence that vessel branching is induced at the neuron-neurite interface, but that other factors are required for full plexus layer formation. We further demonstrate that the displacement of neurons results in the mislocalization of angiogenic factors. CONCLUSIONS: Inner retina neuron lamination is required for development of intraretinal vessels.


Assuntos
Modelos Animais de Doenças , Retina/anormalidades , Hemorragia Retiniana/etiologia , Neovascularização Retiniana/etiologia , Neurônios Retinianos/patologia , Animais , Western Blotting , Caderinas/genética , Moléculas de Adesão Celular/genética , Contagem de Células , Proteínas do Citoesqueleto , Glicoproteínas/metabolismo , Hibridização In Situ , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Microscopia Confocal , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Semaforinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA