Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(1): 171-182.e8, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134934

RESUMO

Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.


Assuntos
Actinas , Actomiosina , Animais , Actinas/metabolismo , Adesão Celular/fisiologia , Actomiosina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas do Citoesqueleto , Miosinas
2.
EMBO J ; 42(24): e114557, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987147

RESUMO

Motile cells encounter microenvironments with locally heterogeneous mechanochemical composition. Individual compositional parameters, such as chemokines and extracellular matrix pore sizes, are well known to provide guidance cues for pathfinding. However, motile cells face diverse cues at the same time, raising the question of how they respond to multiple and potentially competing signals on their paths. Here, we reveal that amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical micro-environments. Using mammalian immune cells and the amoeba Dictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step polarity switch and is driven by myosin-II forces that readjust the nuclear to the cellular path. Impaired nucleokinesis distorts path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that many immune cells, amoebae, and some cancer cells utilize an amoeboid migration strategy, these results suggest that nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.


Assuntos
Amoeba , Dictyostelium , Animais , Movimento Celular , Matriz Extracelular , Mamíferos
3.
Curr Protoc ; 2(4): e407, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35384410

RESUMO

Immune cells are constantly on the move through multicellular organisms to explore and respond to pathogens and other harmful insults. While moving, immune cells efficiently traverse microenvironments composed of tissue cells and extracellular fibers, which together form complex environments of various porosity, stiffness, topography, and chemical composition. In this protocol we describe experimental procedures to investigate immune cell migration through microenvironments of heterogeneous porosity. In particular, we describe micro-channels, micro-pillars, and collagen networks as cell migration paths with alternative pore size choices. Employing micro-channels or micro-pillars that divide at junctions into alternative paths with initially differentially sized pores allows us to precisely (1) measure the cellular translocation time through these porous path junctions, (2) quantify the cellular preference for individual pore sizes, and (3) image cellular components like the nucleus and the cytoskeleton. This reductionistic experimental setup thus can elucidate how immune cells perform decisions in complex microenvironments of various porosity like the interstitium. The setup further allows investigation of the underlying forces of cellular squeezing and the consequences of cellular deformation on the integrity of the cell and its organelles. As a complementary approach that does not require any micro-engineering expertise, we describe the usage of three-dimensional collagen networks with different pore sizes. Whereas we here focus on dendritic cells as a model for motile immune cells, the described protocols are versatile as they are also applicable for other immune cell types like neutrophils and non-immune cell types such as mesenchymal and cancer cells. In summary, we here describe protocols to identify the mechanisms and principles of cellular probing, decision making, and squeezing during cellular movement through microenvironments of heterogeneous porosity. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Immune cell migration in micro-channels and micro-pillars with defined pore sizes Support Protocol 1: Epoxy replica of generated and/or published micro-structures Support Protocol 2: Dendritic cell differentiation Basic Protocol 2: Immune cell migration in 3D collagen networks of variable pore sizes.


Assuntos
Microambiente Celular , Matriz Extracelular , Movimento Celular , Matriz Extracelular/metabolismo , Porosidade
4.
Nature ; 599(7884): 273-277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707283

RESUMO

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Transdução de Sinais , Álcalis , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Ativação Enzimática , Proteínas F-Box/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
5.
Nature ; 568(7753): 546-550, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944468

RESUMO

During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.


Assuntos
Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Quimiotaxia/fisiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Porosidade
6.
Methods Cell Biol ; 147: 79-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165964

RESUMO

Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile "pillar forests" to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters.


Assuntos
Movimento Celular , Microambiente Celular , Imageamento Tridimensional , Microtecnologia/métodos , Animais , Linhagem Celular Tumoral , Humanos
7.
Sci Rep ; 6: 36440, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819270

RESUMO

Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue.


Assuntos
Quimiocina CCL19/farmacologia , Quimiocina CCL21/farmacologia , Quimiotaxia/efeitos dos fármacos , Células Dendríticas/fisiologia , Microfluídica/métodos , Animais , Células da Medula Óssea/citologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL19/química , Quimiocina CCL19/metabolismo , Quimiocina CCL21/química , Células Dendríticas/citologia , Fluoresceína-5-Isotiocianato/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Proteínas Imobilizadas/farmacologia , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica/instrumentação , Microscopia de Fluorescência , Fotodegradação , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 108(50): 19913-8, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123983

RESUMO

The binding and polymerization of RecA protein to DNA is required for recombination, which is an essential function of life. We study the pressure and temperature dependence of RecA binding to single-stranded DNA in the presence of adenosine 5'-[γ-thio]triphosphate (ATP[γ-S]), in a temperature regulated high pressure cell using fluorescence anisotropy. Measurements were possible at temperatures between 5-60 °C and pressures up to 300 MPa. Experiments were performed on Escherichia coli RecA and RecA from a thermophilic bacteria, Thermus thermophilus. For E. coli RecA at a given temperature, binding is a monotonically decreasing and reversible function of pressure. At atmospheric pressure, E. coli RecA binding decreases monotonically up to 42 °C, where a sharp transition to the unbound state indicates irreversible heat inactivation. T. thermophilus showed no such transition within the temperature range of our apparatus. Furthermore, we find that binding occurs for a wider range of pressure and temperature for T. thermophilus compared to E. coli RecA, suggesting a correlation between thermophilicity and barophilicity. We use a two-state model of RecA binding/unbinding to extract the associated thermodynamic parameters. For E. coli, we find that the binding/unbinding phase boundary is hyperbolic. Our results of the binding of RecA from E. coli and T. thermophilus show adaptation to pressure and temperature at the single protein level.


Assuntos
DNA de Cadeia Simples/metabolismo , Escherichia coli/metabolismo , Pressão , Recombinases Rec A/metabolismo , Temperatura , Thermus thermophilus/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Pressão Atmosférica , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Ligação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA